Research report, "Some convergence theorems for arrays of two average index of random elements in Banach spaces with integrable conditions on" pptx

10 254 0
Research report, "Some convergence theorems for arrays of two average index of random elements in Banach spaces with integrable conditions on" pptx

Đang tải... (xem toàn văn)

Thông tin tài liệu

 u m i=x m  v n j=y n A mnij V ij {V ij ; i, j ∈ Z} {A mnij ; x m  i  u m , y n  j  v n , m  1, n  1} {x m , m ≥ 1} {u m , m ≥ 1} {y n , n ≥ 1} {v n , n ≥ 1} {V ij ; i, j ∈ Z} (Ω, F, P) {A mnij ; x m  i  u m , y n  j  v n , m  1, n  1} {x n , n ≥ 1} {u n , n ≥ 1} {y n , n ≥ 1} {v n , n ≥ 1} u n −x n > 0 n ≥ 1 u n −x n → ∞ n → ∞ v n −y n > 0 n ≥ 1 v n − y n → ∞ n → ∞  u m  i=x m v n  j=y n A mnij V ij  L p −→ 0.  v n j=u n A nj V j L 1 expected value mean V EV Pettis integral provided it exists V expected value EV ∈ X if f(EV ) = Ef (V ) f ∈ X ∗ X ∗ dual X EV EV  < ∞ 1 {A nj ; u n  j  v n , n ≥ 1} {V j , j ∈ Z} X  ·  (Ω, F, P) {F n , n ≥ 1} σ F n ≥ 1 E F n (Y ) Y F n {V j , j ∈ Z} {A nj } p {F n }  > 0 a o = a o () > 0 sup n≥1 v n  j=u n |A nj | p E F n (V j  p I(V j  > a o )) <  a.s. A nj = a nj u n  j  v n , n ≥ 1 F n = {∅, Ω} n ≥ 1 {A nj } p {F n } {|a nj | p } {V j  p , j ∈ Z} Lemma 1. {k mn , m ≥ 1, n ≥ 1} lim m∨n→∞ k mn = ∞ {X ij ; i, j ∈ Z} sup a>0 sup n≥1 1 k mn u m  i=x m v n  i=y n aP{|X ij | > a}  M < ∞, (2.1) and lim a→+∞ sup n≥1 1 k mn u m  i=x m v n  j=y n aP{|X ij | > a} = 0. (2.2) 1 k p mn u m  i=x m v n  i=y n E(|X ij | p I(|X ij |  k mn )) → 0 as m ∨ n → ∞ (p > 1). (2.3) Proof. 1 k p mn u m  i=x m v n  j=y n E(|X ij | p I(|X ij |  k mn )) = = 1 k p mn u m  i=x m v n  j=y n E(|X ij | p I(|X ij |  1)) + 1 k p mn u m  i=x m v n  j=y n k mn  l=2 E(|X ij | p I(l − 1 < |X ij |  l )) =: A mn + B mn . We first verify that lim m∨n→∞ A mn = 0. A mn = 1 k p mn u m  i=x m v n  i=y n E(|X ij | p I(|X ij |  1)) = 1 k p mn u m  i=x m v n  j=y n  ∞  l=1 E(|X ij | p I( 1 l + 1 < |X ij |  1 l ))   1 k p mn u m  i=x m v n  j=y n  ∞  l=1 1 l p P{ 1 l + 1 < |X ij |  1 l }  = 1 k p mn u m  i=x m v n  j=y n  ∞  l=1 1 l p  P{|X ij | > 1 l + 1 } − P{|X ij | > 1 l }   = 1 k p mn u m  i=x m v n  j=y n  ∞  l=1  1 l p − 1 (l + 1) p  P{|X ij | > 1 l + 1 }  = 1 k p−1 mn ∞  l=1  1 l p − 1 (l + 1) p  (l + 1)  1 k mn u m  i=x m v n  j=y n 1 l + 1 P{|X ij | > 1 l + 1 }   M 1 k p−1 mn ∞  l=1  1 l p − 1 (l + 1) p  (l + 1) (by (2.1)) = M 1 k p−1 mn ( ∞  l=1 1 l p + 1) → 0 as m ∨ n → ∞. (2.4) Next, we will show that lim m∨n→∞ B mn = 0. In deed, since k mn  l=2 (l p − (l − 1) p ) k p−1 mn (l − 1) = 1 k p−1 mn k mn  l=2 l p (l − 1)l + k mn k mn − 1 − 2 p−1 k p−1 mn  2 k p−1 mn k mn  l=2 l p−2 + k mn k mn − 1  4, By (2.2) we have B mn = 1 k p mn u m  i=x m v n  j=y n  k mn  l=2 E(|X ij | p I(l − 1 < |X ij |  l ))   1 k p mn u m  i=x m v n  j=y n  k mn  l=2 l p P{l − 1 < |X ij |  l }  = 1 k p mn u m  i=x m v n  j=y n  k mn  l=2 l p [P{|X ij | > l − 1} − P{|X ij | > l}]  = 1 k p mn u m  i=x m v n  j=y n  k mn  l=2 [l p − (l − 1) p ]P{|X ij | > l − 1}  = k mn  l=2  (l p − (l − 1) p ) k p−1 mn (l − 1)  1 k mn u m  i=x m v n  i=y n (l − 1)P{|X ij | > l − 1}   4. 1 k mn u m  i=x m v n  j=y n (l − 1)P{|X ij | > l − 1}  4. sup m≥1,n≥1 1 k mn u m  i=x m v n  j=y n (l − 1)P{|X ij | > l − 1} → 0 as l → ∞. (2.5) So the conclusion (2.3) follows from (2.4) and (2.5). Corollary 1. {a mnij ; x m  i  u m , y n  j  v n , m ≥ 1, n ≥ 1} u m  i=x m v n  j=y n |a mnij |  M < ∞ and sup x m iu m ,y n jv n |a mnij | → 0 as m ∨ n → ∞. {X ij ; i, j ∈ Z} {|a mnij |} lim a→+∞ sup m≥1,n≥1 u m  j=x m u n  j=y n |a mnij |E(|X ij |I(|X ij | > a)) = 0. c mn = 1 sup x m iu m ,y n jv n |a mnij | u m  i=x m v n  j=y n |a mnij | q E(|X ij | q I(|X ij |  c mn )) → 0 as m ∨ n → ∞ (q > 1). Proof. Applying Lemma 1 with k mn = [c mn ] + 1 and X ij is replaced by a mnij c mn X ij . {Y n , n ≥ 1} Bernoulli sequence {Y n , n ≥ 1} P{Y 1 = 1} = P{Y 1 = −1} = 1/2 X ∞ = X × X × X × . . . C(X ) = {(v 1 , v 2 , . . .) ∈ X ∞ : ∞  n=1 v n v n converges in probability}. 1  p  2 X Rademacher type p C (0 < C < ∞) E ∞  n=1 Y n v n  p  C ∞  n=1 v n  p for all (v 1 , v 2 , v 3 , . . .) ∈ C(X ). (2.6) φ 1  p  2 Rademacher type p C (0 < C < ∞) E     n  j=1 V j      p  C n  j=1 V j  p (2.7) {V 1 , V 2 , . . . , V n } 1 < p  2 1  r < p L p l p 2∧p p ≥ 1 a, b ∈ R, min{a, b} max{a, b} a ∧ b a∨b C (0 < C < ∞) Theorem 1. 1  r < p  2 {V ij ; i, j ∈ Z} (Ω, F, P) p X {A mnij ; x m  i  u m , y n  j  v n , m  1, n  1} u m  i=x m v n  j=y n E|A mnij | r  M < ∞ (3.1) and sup x m iu m ,y n jv n E|A mnij | r → 0 as m ∨ n → ∞. (3.2) {F mn ; m ≥ 1, n ≥ 1} σ F A mnij , x m  i  u m , y n  j  v n F mn {V ij ; i, j ∈ Z} {A mnij } r {F mn } lim a→+∞ sup m≥1,n≥1 u m  i=x m v n  j=y n |A mnij | r E F mn (V ij  r I(V ij  > a)) = 0 a.s. (3.3) m ≥ 1 n ≥ 1 {A mnij V ij ; x m  i  u m , y n  j  v n } A mnij V ij m ≥ 1, n ≥ 1, x m  i  u m , y n  j  v n      u m  i=x m v n  j=y n A mnij V ij      L r −→ 0 as m ∨ n → ∞. (3.4) Proof. Since (3.3) there exists a o > 0 such that E  u m  j=x m v n  j=y n |A mnij | r E F mn (V ij  r I(V ij  > a o ))  < 1, m ≥ 1, n ≥ 1. Thus EA mnij V ij I(V ij  > a o ) < 1 for all x m  i  u m , y n  j  v n , m ≥ 1, n ≥ 1. (3.5) For all m ≥ 1, n ≥ 1, x m  i  u m , y n  j  v n , (by (3.1) and (3.5) we have EA mnij V ij  = EA mnij V ij I(V ij   a o ) + EA mnij V ij I(V ij  > a o )  a o E|A mnij | + EA mnij V ij I(V ij  > a o ) < ∞ implying that E(A mnij V ij ) exists. Set c mn = 1 sup x m iu m ,y n jv n E|A mnij | r , V  mnij = V ij I(V ij   c mn ), V  mnij = V ij I(V ij  > c mn ), b  mnij = EV  mnij , b  mnij = EV  mnij . Observe that for each i and j, x m  i  u m , y n  j  v n , then V ij = (V  mnij −b  mnij )+ (V  mnij − b  mnij ). And since A mnij and V ij are independent for each m, n, i, j we have E(A mnij (V  ij − b  mnij )) = E(A mnij (V  mnij − b  mnij )) = 0. Hence E      u m  i=x m v n  j=y n A mnij V ij      r = E      u m  i=x m v n  j=y n A mnij (V  mnij − b  mnij ) + u m  i=x m v n  j=y n A mnij (V  mnij − b  mnij )      r  CE      u m  i=x m v n  j=y n A mnij (V  mnij − b  mnij )      r + CE      u m  i=x m v n  j=y n A mnij (V  mnij − b  mnij )      r (by c r -inequality)  C  E      u m  i=x m v n  j=y n A mnij (V  mnij − b  mnij )      p  r/p + CE      u m  i=x m v n  j=y n A mnij (V  mnij − b  mnij )      r  C  u m  i=x m v n  j=y n EA mnij (V  mnij − b  mnij ) p  r/p + C u m  i=x m v n  j=y n EA mnij (V  mnij − b  mnij ) r  C  u m  i=x m v n  j=y n E|A mnij | p E(V ij  p I(V ij   c mn ))  r/p + C u m  i=x m v n  j=y n E(A mnij V ij  r I(V ij  > c mn )). Now, by (3.3), for arbitrary  > 0 there exists a o > 0 such that for all a ≥ a o . We have E  sup m≥1,n≥1 u m  j=x m v n  j=y n |A mnij | r E F mn (V ij  r I(V ij  > a))  < . (3.6) This implies sup m≥1,n≥1 u m  i=x m v n  j=y n E|A mnij | r E(V ij  r I(V ij  > a)) <  ∀a ≥ a o . (3.7) Note that (3.6) means {V ij  r ; i, j ∈ Z} is {E|A mnij | r }-uniformly integrable, and then by Corollary 1 with q = p/r, X ij = V ij  r and a mnij = E|A mnij | r we get u m  i=x m v n  j=y n |A mnij | p E(V ij  p I(V ij   c mn )) → 0 as m ∨ n → ∞. On the other hand (3.6) also implies u m  i=x m v n  j=y n E(A mnij V ij  r I(V ij  > c mn ) → 0 as m ∨ n → ∞. Thus E      u m  i=x m v n  j=y n A mnij V ij      r → 0 as m ∨ n → ∞. The proof is completed. Theorem 2. 0 < r < 1 {V ij ; i, j ∈ Z} {A mnij ; x m  i  u m , y n  j  v n , m  1, n  1} u m  i=x m v n  j=y n (E|A mnij |) r  M < ∞ (3.8) and sup x m iu m ,y n jv n E|A mnij | → 0 as m ∨ n → ∞. (3.9) {F mn ; m ≥ 1, n ≥ 1} σ F A mnij , x m  i  u m , y n  j  v n F mn {V ij ; i, j ∈ Z} {A mnij } r {F mn } (3.3)      u m  i=x m v n  j=y n A mnij V ij      L r −→ 0 as m ∨ n → ∞. (3.10) Proof. By (3.3), for arbitrary  > 0 there exists a > 0 such that E  sup m≥1,n≥1 u m  j=x m v n  j=y n |A mnij | r E F mn (V ij  r I(V ij  > a))  <  2 , this implies u m  i=x m v n  j=y n E(A mnij V ij  r I(V ij  > a)) <  2 , m ≥ 1, n ≥ 1. On the other hand, since  E      u m  j=x m v n  j=y n A mnij V ij I(V ij   a)      r  1/r  E      u m  j=x m v n  j=y n A mnij V ij I(V ij   a)       u m  j=x m v n  j=y n E(A mnij V ij I(V ij   a))  a u m  j=x m v n  j=y n E|A mnij |  a  u m  j=x m v n  j=y n (E|A mnij |) r  sup x m iu m ,y n jv n (E|A mnij |) 1−r  aM sup x m iu m ,y n jv n (E|A mnij |) 1−r → 0 as m ∨ n → ∞, there exists m o , n o such that for all (m ∨ n ) ≥ (m o ∨ n o ), E      u m  i=x m v n  j=y n A mnij V ij I(V ij   a)      r   2 . (3.11) Hence, E      u m  i=x m v n  j=y n A mnij V ij      r = E      u m  i=x m v n  j=y n A mnij V ij I(V ij   a) + u m  i=x m v n  j=y n A mnij V ij I(V ij  > a)      r  E      u m  i=x m v n  j=y n A mnij V ij I(V ij   a)      r + E      u m  i=x m v n  j=y n A mnij V ij I(V ij  > a)      r  E      u m  i=x m v n  j=y n A mnij V ij I(V ij   a)      r + u m  i=x m v n  j=y n E(A mnij V ij  r I(V ij  > a)) <  for all (m ∨ n) ≥ (m o ∨ n o ), which completes the proof. Remark. {A mnij ; x m  i  u m , y n  j  v n , m  1, n  1} F mn m ≥ 1 n ≥ 1 F mn = σ(A mnij , x m  i  u m , y n  j  v n ) F mn σ {A mnij ; x m  i  u m , y n  j  v n , m  1, n  1} m ≥ 1 n ≥ 1 p 37 φ p 21 p 52  u m i=x m  v n j=y n A mnij V ij {V ij ; i, j ∈ Z} {A mnij ; x m  i  u m , y n  j  v n } {x m , m ≥ 1} {u m , m ≥ 1} {y n , n ≥ 1} {v n , n ≥ 1} 13 th . EV  mnij . Observe that for each i and j, x m  i  u m , y n  j  v n , then V ij = (V  mnij −b  mnij )+ (V  mnij − b  mnij ). And since A mnij and V ij are independent for each m, n, i, j. a o . (3.7) Note that (3.6) means {V ij  r ; i, j ∈ Z} is {E|A mnij | r }-uniformly integrable, and then by Corollary 1 with q = p/r, X ij = V ij  r and a mnij = E|A mnij | r we get u m  i=x m v n  j=y n |A mnij | p E(V ij  p I(V ij . 0. c mn = 1 sup x m iu m ,y n jv n |a mnij | u m  i=x m v n  j=y n |a mnij | q E(|X ij | q I(|X ij |  c mn )) → 0 as m ∨ n → ∞ (q > 1). Proof. Applying Lemma 1 with k mn = [c mn ] + 1 and X ij is replaced by a mnij c mn X ij . {Y n , n ≥ 1} Bernoulli

Ngày đăng: 23/07/2014, 14:21

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan