BÀI TẬP HÌNH HỌC 9 CÓ LỜI GIẢI CHI TIẾT

45 4.4K 6
BÀI TẬP HÌNH HỌC 9 CÓ LỜI GIẢI CHI TIẾT

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BÀI TẬP HÌNH HỌC 9 CÓ LỜI GIẢI CHI TIẾT

TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP   Bài Cho tam giác ABC có ba góc nhọn nội tiếp đường trịn (O) Các đường cao AD, BE, CF cắt H cắt đường tròn (O) M,N,P => ∠ CEH + ∠ CDH = 1800 Chứng minh rằng: Tứ giác CEHD, nội tiếp Bốn điểm B,C,E,F nằm đường tròn AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC Xác định tâm đường tròn nội tiếp tam giác DEF Lời giải: Xét tứ giác CEHD ta có: ∠ CEH = 900 ( Vì BE đường cao) ∠ CDH = 900 ( Vì AD đường cao) Mà ∠ CEH ∠ CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE ⊥ AC => ∠BEC = 900 CF đường cao => CF ⊥ AB => ∠BFC = 900 Như E F nhìn BC góc 900 => E F nằm đường trịn đường kính BC Vậy bốn điểm B,C,E,F nằm đường trịn Xét hai tam giác AEH ADC ta có: ∠ AEH = ∠ ADC = 900 ; Â góc chung AE AH = => ∆ AEH ∼ ∆ADC => => AE.AC = AH.AD AD AC * Xét hai tam giác BEC ADC ta có: ∠ BEC = ∠ ADC = 900 ; ∠C góc chung BE BC = => ∆ BEC ∼ ∆ADC => => AD.BC = BE.AC AD AC Ta có ∠C1 = ∠A1 ( phụ với góc ABC) ∠C2 = ∠A1 ( hai góc nội tiếp chắn cung BM) => ∠C1 = ∠ C2 => CB tia phân giác góc HCM; lại có CB ⊥ HM => ∆ CHM cân C => CB đương trung trực HM H M đối xứng qua BC Theo chứng minh bốn điểm B,C,E,F nằm đường tròn => ∠C1 = ∠E1 ( hai góc nội tiếp chắn cung BF) Cũng theo chứng minh CEHD tứ giác nội tiếp ∠C1 = ∠E2 ( hai góc nội tiếp chắn cung HD) ∠E1 = ∠E2 => EB tia phân giác góc FED Chứng minh tương tự ta có FC tia phân giác góc DFE mà BE CF cắt H H tâm đường trịn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đường cao AD, BE, cắt H Gọi O tâm đường tròn ngoại tiếp tam giác AHE ∠ CEH = 900 ( Vì BE đường cao) Chứng minh tứ giác CEHD nội tiếp Bốn điểm A, E, D, B nằm đường tròn Chứng minh ED = BC Chứng minh DE tiếp tuyến đường trịn (O) Tính độ dài DE biết DH = Cm, AH = Cm Lời giải: Xét tứ giác CEHD ta có: TUYỂN TẬP 80 BÀI TỐN HèNH HỌC LỚP ∠ CDH = 900 ( Vì AD đường cao) => ∠ CEH + ∠ CDH = 1800 Mà ∠ CEH ∠ CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE ⊥ AC => ∠BEA = 900 AD đường cao => AD ⊥ BC => ∠BDA = 900 Như E D nhìn AB góc 90 => E D nằm đường trịn đường kính AB Vậy bốn điểm A, E, D, B nằm đường tròn Theo giả thiết tam giác ABC cân A có AD đường cao nên đường trung tuyến => D trung điểm BC Theo ta có ∠BEC = 900 Vậy tam giác BEC vng E có ED trung tuyến => DE = BC Vì O tâm đường tròn ngoại tiếp tam giác AHE nên O trung điểm AH => OA = OE => tam giác AOE cân O => ∠E1 = ∠A1 (1) Theo DE = BC => tam giác DBE cân D => ∠E3 = ∠B1 (2) Mà ∠B1 = ∠A1 ( phụ với góc ACB) => ∠E1 = ∠E3 => ∠E1 + ∠E2 = ∠E2 + ∠E3 Mà ∠E1 + ∠E2 = ∠BEA = 900 => ∠E2 + ∠E3 = 900 = ∠OED => DE ⊥ OE E Vậy DE tiếp tuyến đường tròn (O) E Theo giả thiết AH = Cm => OH = OE = cm.; DH = Cm => OD = cm Áp dụng định lí Pitago cho tam giác OED vng E ta có ED2 = OD2 – OE2  ED2 = 52 – 32  ED = 4cm Bài Cho nửa đường trịn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By C D Các đường thẳng AD BC cắt N Chứng minh AC + BD = CD Lời giải: Chứng minh ∠COD = 90 AB 3.Chứng minh AC BD = 4.Chứng minh OC // BM 5.Chứng minh AB tiếp tuyến đường trịn đường kính CD 5.Chứng minh MN ⊥ AB 6.Xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ Theo tính chất hai tiếp tuyến cắt ta có: CA = CM; DB = DM => AC + BD = CM + DM Mà CM + DM = CD => AC + BD = CD Theo tính chất hai tiếp tuyến cắt ta có: OC tia phân giác góc AOM; OD tia phân giác góc BOM, mà ∠AOM ∠BOM hai góc kề bù => ∠COD = 900 TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP Theo ∠COD = 900 nên tam giác COD vng O có OM ⊥ CD ( OM tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OM2 = CM DM, AB Mà OM = R; CA = CM; DB = DM => AC BD =R2 => AC BD = 4.Theo ∠COD = 900 nên OC ⊥ OD (1) Theo tính chất hai tiếp tuyến cắt ta có: DB = DM; lại có OM = OB =R => OD trung trực BM => BM ⊥ OD (2) Từ (1) Và (2) => OC // BM ( Vì vng góc với OD) Gọi I trung điểm CD ta có I tâm đường trịn ngoại tiếp tam giác COD đường kính CD có IO bán kính Theo tính chất tiếp tuyến ta có AC ⊥ AB; BD ⊥ AB => AC // BD => tứ giác ACDB hình thang Lại có I trung điểm CD; O trung điểm AB => IO đường trung bình hình thang ACDB ⇒ IO // AC , mà AC ⊥ AB => IO ⊥ AB O => AB tiếp tuyến O đường trịn đường kính CD CN AC CN CM = = Theo AC // BD => , mà CA = CM; DB = DM nên suy BN BD BN DM => MN // BD mà BD ⊥ AB => MN ⊥ AB ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ CD nhỏ , mà CD nhỏ CD khoảng cách giữ Ax By tức CD vuông góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đường tròn nội tiếp, K tâm đường trịn bàng tiếp góc A , O trung điểm IK Chứng minh B, C, I, K nằm đường tròn Chứng minh AC tiếp tuyến đường trịn (O) Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm Lời giải: (HD) Vì I tâm đường tròn nội tiếp, K tâm đường trịn bàng tiếp góc A nên BI BK hai tia phân giác hai góc kề bù đỉnh B Do BI ⊥ BK hay∠IBK = 900 Tương tự ta có ∠ICK = 900 B C nằm đường trịn đường kính IK B, C, I, K nằm đường trịn Ta có ∠C1 = ∠C2 (1) ( CI phân giác góc ACH ∠C2 + ∠I1 = 900 (2) ( ∠IHC = 900 ) ∠I1 = ∠ ICO (3) ( tam giác OIC cân O) Từ (1), (2) , (3) => ∠C1 + ∠ICO = 900 hay AC ⊥ OC Vậy AC tiếp tuyến đường tròn (O) Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm 2 AH = AC – HC2 => AH = 20 − 12 = 16 ( cm) CH 12 = (cm) = AH 16 OH + HC = + 12 = 225 = 15 (cm) CH2 = AH.OH => OH = OC = Bài Cho đường tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đường thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC ⊥ MB, BD ⊥ MA, gọi H giao điểm AC BD, I giao điểm OM AB TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP Chứng minh tứ giác AMBO nội tiếp Chứng minh năm điểm O, K, A, M, B nằm đường tròn Chứng minh OI.OM = R2; OI IM = IA2 Chứng minh OAHB hình thoi Chứng minh ba điểm O, H, M thẳng hàng Tìm quỹ tích điểm H M di chuyển đường thẳng d Lời giải: (HS tự làm) Vì K trung điểm NP nên OK ⊥ NP ( quan hệ đường kính Và dây cung) => ∠OKM = 900 Theo tính chất tiếp tuyến ta có ∠OAM = 900; ∠OBM = 900 K, A, B nhìn OM góc 900 nên nằm đường trịn đường kính OM Vậy năm điểm O, K, A, M, B nằm đường trịn Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM trung trực AB => OM ⊥ AB I Theo tính chất tiếp tuyến ta có ∠OAM = 900 nên tam giác OAM vuông A có AI đường cao Áp dụng hệ thức cạnh đường cao => OI.OM = OA2 hay OI.OM = R2; OI IM = IA2 Ta có OB ⊥ MB (tính chất tiếp tuyến) ; AC ⊥ MB (gt) => OB // AC hay OB // AH OA ⊥ MA (tính chất tiếp tuyến) ; BD ⊥ MA (gt) => OA // BD hay OA // BH => Tứ giác OAHB hình bình hành; lại có OA = OB (=R) => OAHB hình thoi Theo OAHB hình thoi => OH ⊥ AB; theo OM ⊥ AB => O, H, M thẳng hàng( Vì qua O có đường thẳng vng góc với AB) (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đường thẳng d nửa đường tròn tâm A bán kính AH = R Bài Cho tam giác ABC vuông A, đường cao AH Vẽ đường trịn tâm A bán kính AH Gọi HD đường kính đường trịn (A; AH) Tiếp tuyến đường tròn D cắt CA E Chứng minh tam giác BEC cân Gọi I hình chiếu A BE, Chứng minh AI = AH Chứng minh BE tiếp tuyến đường tròn (A; AH) Chứng minh BE = BH + DE Lời giải: (HD) ∆ AHC = ∆ADE (g.c.g) => ED = HC (1) AE = AC (2) Vì AB ⊥CE (gt), AB vừa đường cao vừa đường trung tuyến ∆BEC => BEC tam giác cân => ∠B1 = ∠B2 Hai tam giác vng ABI ABH có cạnh huyền AB chung, ∠B1 = ∠B2 => ∆ AHB = ∆AIB => AI = AH AI = AH BE ⊥ AI I => BE tiếp tuyến (A; AH) I DE = IE BI = BH => BE = BI+IE = BH + ED Bài Cho đường trịn (O; R) đường kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) M (HS tự làm) Chứng minh tứ giác APMO nội tiếp 2.Ta có ∠ ABM nội tiếp đường trịn chắn cung AM; ∠ AOM Chứng minh BM // OP góc tâm Đường thẳng vng góc với AB O cắt tia BM N Chứng chắn cung AM => ∠ ABM minh tứ giác OBNP hình bình hành ∠AOM = (1) OP tia phân Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Lời giải: TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP giác ∠ AOM ( t/c hai tiếp tuyến cắt ) => ∠AOM (2) Từ (1) (2) => ∠ ABM = ∠ AOP (3) ∠ AOP = Mà ∠ ABM ∠ AOP hai góc đồng vị nên suy BM // OP (4) 3.Xét hai tam giác AOP OBN ta có : ∠PAO=900 (vì PA tiếp tuyến ); ∠NOB = 900 (gt NO⊥AB) => ∠PAO = ∠NOB = 900; OA = OB = R; ∠AOP = ∠OBN (theo (3)) => ∆AOP = ∆OBN => OP = BN (5) Từ (4) (5) => OBNP hình bình hành ( có hai cạnh đối song song nhau) Tứ giác OBNP hình bình hành => PN // OB hay PJ // AB, mà ON ⊥ AB => ON ⊥ PJ Ta có PM ⊥ OJ ( PM tiếp tuyến ), mà ON PM cắt I nên I trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP hình chữ nhật có ∠PAO = ∠AON = ∠ONP = 900 => K trung điểm PO ( t/c đường chéo hình chữ nhật) (6) AONP hình chữ nhật => ∠APO = ∠ NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt Ta có PO tia phân giác ∠APM => ∠APO = ∠MPO (8) Từ (7) (8) => ∆IPO cân I có IK trung tuyến đông thời đường cao => IK ⊥ PO (9) Từ (6) (9) => I, J, K thẳng hàng Bài Cho nửa đường tròn tâm O đường kính AB điểm M nửa đường tròn ( M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đường tròn E; cắt tia BM F tia BE cắt Ax H, cắt AM K 1) Chứng minh rằng: EFMK tứ giác nội tiếp 2) Chứng minh rằng: AI2 = IM IB 3) Chứng minh BAF tam giác cân 4) Chứng minh : Tứ giác AKFH hình thoi 5) Xác định vị trí M để tứ giác AKFI nội tiếp đường tròn Lời giải: Ta có : ∠AMB = 900 ( nội tiếp chắn nửa đường trịn ) => ∠KMF = 900 (vì hai góc kề bù) ∠AEB = 900 ( nội tiếp chắn nửa đường trịn ) => ∠KEF = 900 (vì hai góc kề bù) => ∠KMF + ∠KEF = 1800 Mà ∠KMF ∠KEF hai góc đối tứ giác EFMK EFMK tứ giác nội tiếp Ta có ∠IAB = 900 ( AI tiếp tuyến ) => ∆AIB vng A có AM ⊥ IB ( theo trên) Áp dụng hệ thức cạnh đường cao => AI2 = IM IB Theo giả thiết AE tia phân giác góc IAM => ∠IAE = ∠MAE => AE = ME (lí ……) => ∠ABE =∠MBE ( hai góc nội tiếp chắn hai cung nhau) => BE tia phân giác góc ABF (1) Theo ta có ∠AEB = 900 => BE ⊥ AF hay BE đường cao tam giác ABF (2) Từ (1) (2) => BAF tam giác cân B TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP BAF tam giác cân B có BE đường cao nên đồng thời đương trung tuyến => E trung điểm AF (3) Từ BE ⊥ AF => AF ⊥ HK (4), theo AE tia phân giác góc IAM hay AE tia phân giác ∠HAK (5) Từ (4) (5) => HAK tam giác cân A có AE đường cao nên đồng thời đương trung tuyến => E trung điểm HK (6) Từ (3) , (4) (6) => AKFH hình thoi ( có hai đường chéo vng góc với trung điểm đường) (HD) Theo AKFH hình thoi => HA // FK hay IA // FK => tứ giác AKFI hình thang Để tứ giác AKFI nội tiếp đường trịn AKFI phải hình thang cân AKFI hình thang cân M trung điểm cung AB Thật vậy: M trung điểm cung AB => ∠ABM = ∠MAI = 450 (t/c góc nội tiếp ) (7) Tam giác ABI vng A có ∠ABI = 450 => ∠AIB = 450 (8) Từ (7) (8) => ∠IAK = ∠AIF = 450 => AKFI hình thang cân (hình thang có hai góc đáy nhau) Vậy M trung điểm cung AB tứ giác AKFI nội tiếp đường tròn Bài Cho nửa đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đường tròn Các tia AC AD cắt Bx E, F (F B E) Chứng minh AC AE không đổi Chứng minh ∠ ABD = ∠ DFB Chứng minh CEFD tứ giác nội tiếp Lời giải: C thuộc nửa đường tròn nên ∠ACB = 900 ( nội tiếp chắn nửa đường tròn ) => BC ⊥ AE ∠ABE = 900 ( Bx tiếp tuyến ) => tam giác ABE vuông B có BC đường cao => AC AE = AB2 (hệ thức cạnh đường cao ), mà AB đường kính nên AB = 2R khơng đổi AC AE khơng đổi ∆ ADB có ∠ADB = 900 ( nội tiếp chắn nửa đường trịn ) => ∠ABD + ∠BAD = 900 (vì tổng ba góc tam giác 1800) (1) ∆ ABF có ∠ABF = 900 ( BF tiếp tuyến ) => ∠AFB + ∠BAF = 900 (vì tổng ba góc tam giác 1800) (2) Từ (1) (2) => ∠ABD = ∠DFB ( phụ với ∠BAD) Tứ giác ACDB nội tiếp (O) => ∠ABD + ∠ACD = 1800 ∠ECD + ∠ACD = 1800 ( Vì hai góc kề bù) => ∠ECD = ∠ABD ( bù với ∠ACD) Theo ∠ABD = ∠DFB => ∠ECD = ∠DFB Mà ∠EFD + ∠DFB = 1800 ( Vì hai góc kề bù) nên suy ∠ECD + ∠EFD = 1800, mặt khác ∠ECD ∠EFD hai góc đối tứ giác CDFE tứ giác CEFD tứ giác nội tiếp Bài 10 Cho đường trịn tâm O đường kính AB điểm M nửa đường trịn cho AM < MB Gọi M’ điểm đối xứng M qua AB S giao điểm hai tia BM, M’A Gọi P chân đường vuông góc từ S đến AB Lời giải: 1.Gọi S’ giao điểm MA SP Chứng minh ∆ PS’M cân Ta có SP ⊥ AB (gt) => ∠SPA = 2.Chứng minh PM tiếp tuyến đường tròn 900 ; ∠AMB = 900 ( nội tiếp chắn TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP nửa đường tròn ) => ∠AMS = 900 Như P M nhìn AS góc 900 nên nằm đường trịn đường kính AS Vậy bốn điểm A, M, S, P nằm đường trịn Vì M’đối xứng M qua AB mà M nằm đường tròn nên M’ nằm đường tròn => hai cung AM AM’ có số đo => ∠AMM’ = ∠AM’M ( Hai góc nội tiếp chắn hai cung nhau) (1) Cũng M’đối xứng M qua AB nên MM’ ⊥ AB H => MM’// SS’ ( vuông góc với AB) => ∠AMM’ = ∠AS’S; ∠AM’M = ∠ASS’ (vì so le trong) (2) => Từ (1) (2) => ∠AS’S = ∠ASS’ Theo bốn điểm A, M, S, P nằm đ/ tròn => ∠ASP=∠AMP (nội tiếp chắn AP ) => ∠AS’P = ∠AMP => tam giác PMS’ cân P Tam giác SPB vuông P; tam giác SMS’ vuông M => ∠B1 = ∠S’1 (cùng phụ với ∠S) (3) Tam giác PMS’ cân P => ∠S’1 = ∠M1 (4) Tam giác OBM cân O ( có OM = OB =R) => ∠B1 = ∠M3 (5) Từ (3), (4) (5) => ∠M1 = ∠M3 => ∠M1 + ∠M2 = ∠M3 + ∠M2 mà ∠M3 + ∠M2 = ∠AMB = 900 nên suy ∠M1 + ∠M2 = ∠PMO = 900 => PM ⊥ OM M => PM tiếp tuyến đường tròn M Bài 11 Cho tam giác ABC (AB = AC) Cạnh AB, BC, CA tiếp xúc với đường tròn (O) điểm D, E, F BF cắt (O) I , DI cắt BC M Chứng minh : Tam giác DEF có ba góc nhọn BD BM = DF // BC Tứ giác BDFC nội tiếp CB CF => BDFC hình thang cân BDFC nội tiếp Lời giải: đường trịn (HD) Theo t/c hai tiếp tuyến cắt ta có AD = AF => tam giác ADF cân A => ∠ADF = ∠AFD < 900 => sđ cung DF < 1800 => ∠DEF < 900 ( góc DEF nội tiếp chắn cung DE) Chứng minh tương tự ta có ∠DFE < 900; ∠EDF < 900 Như tam giác DEF có ba góc nhọn AD AF = Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC AB AC DF // BC => BDFC hình thang lại có ∠ B = ∠C (vì tam giác ABC cân) Xét hai tam giác BDM CBF Ta có ∠ DBM = ∠BCF ( hai góc đáy tam giác cân) ∠BDM = ∠BFD (nội tiếp chắn cung DI); ∠ CBF = ∠BFD (vì so le) => ∠BDM = ∠CBF BD BM = => ∆BDM ∼∆CBF => CB CF Bài 12 Cho đường trịn (O) bán kính R có hai đường kính AB CD vng góc với Trên đoạn thẳng AB lấy điểm M (M khác O) CM cắt (O) N Đường thẳng vuông góc với AB M cắt tiếp tuyến N đường tròn P Chứng minh : Tứ giác CMPO hình Tứ giác OMNP nội tiếp bình hành TUYỂN TẬP 80 BÀI TỐN HèNH HỌC LỚP 4 CM CN khơng phụ thuộc vào vị trí điểm M Khi M di chuyển đoạn thẳng AB P chạy đoạn thẳng cố định Lời giải: Ta có ∠OMP = 900 ( PM ⊥ AB ); ∠ONP = 900 (vì NP tiếp tuyến ) Như M N nhìn OP góc 900 => M N nằm đường trịn đường kính OP => Tứ giác OMNP nội tiếp Tứ giác OMNP nội tiếp => ∠OPM = ∠ ONM (nội tiếp chắn cung OM) Tam giác ONC cân O có ON = OC = R => ∠ONC = ∠OCN => ∠OPM = ∠OCM Xét hai tam giác OMC MOP ta có ∠MOC = ∠OMP = 900; ∠OPM = ∠OCM => ∠CMO = ∠POM lại có MO cạnh chung => ∆OMC = ∆MOP => OC = MP (1) Theo giả thiết Ta có CD ⊥ AB; PM ⊥ AB => CO//PM (2) Từ (1) (2) => Tứ giác CMPO hình bình hành Xét hai tam giác OMC NDC ta có ∠MOC = 900 ( gt CD ⊥ AB); ∠DNC = 900 (nội tiếp chắn nửa đường tròn ) => ∠MOC =∠DNC = 900 lại có ∠C góc chung => ∆OMC ∼∆NDC CM CO = => => CM CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN CD CN =2R2 không đổi hay tích CM CN khơng phụ thuộc vào vị trí điểm M ( HD) Dễ thấy ∆OMC = ∆DPO (c.g.c) => ∠ODP = 900 => P chạy đường thẳng cố định vng góc với CD D Vì M chạy đoạn thẳng AB nên P chạy doạn thẳng A’ B’ song song AB Bài 13 Cho tam giác ABC vuông A (AB > AC), đường cao AH Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đường trịn đường kính BH cắt AB E, Nửa đường trịn đường kính HC cắt AC F Chứng minh AFHE hình chữ nhật BEFC tứ giác nội tiếp AE AB = AF AC Chứng minh EF tiếp tuyến chung hai nửa đường tròn Lời giải: Ta có : ∠BEH = 900 ( nội tiếp chắn nửc đường tròn ) => ∠AEH = 900 (vì hai góc kề bù) (1) ∠CFH = 900 ( nội tiếp chắn nửc đường tròn ) => ∠AFH = 900 (vì hai góc kề bù).(2) ∠EAF = 900 ( Vì tam giác ABC vng A) (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vng) Tứ giác AFHE hình chữ nhật nên nội tiếp đường tròn =>∠F1=∠H1 (nội tiếp chắn cung AE) Theo giả thiết AH ⊥BC nên AH tiếp tuyến chung hai nửa đường tròn (O1) (O2) => ∠B1 = ∠H1 (hai góc nội tiếp chắn cung HE) => ∠B1= ∠F1 => ∠EBC+∠EFC = ∠AFE + ∠EFC mà ∠AFE + ∠EFC = 1800 (vì hai góc kề bù) => ∠EBC+∠EFC = 1800 mặt khác ∠EBC ∠EFC hai góc đối tứ giác BEFC BEFC tứ giác nội tiếp Xét hai tam giác AEF ACB ta có ∠A = 900 góc chung; ∠AFE = ∠ABC ( theo Chứng minh trên) AE AF = => ∆AEF ∼∆ACB => => AE AB = AF AC AC AB TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP * HD cách 2: Tam giác AHB vng H có HE ⊥ AB => AH2 = AE.AB (*) Tam giác AHC vuông H có HF ⊥ AC => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC Tứ giác AFHE hình chữ nhật => IE = EH => ∆IEH cân I => ∠E1 = ∠H1 ∆O1EH cân O1 (vì có O1E vàO1H bán kính) => ∠E2 = ∠H2 => ∠E1 + ∠E2 = ∠H1 + ∠H2 mà ∠H1 + ∠H2 = ∠AHB = 900 => ∠E1 + ∠E2 = ∠O1EF = 900 => O1E ⊥EF Chứng minh tương tự ta có O2F ⊥ EF Vậy EF tiếp tuyến chung hai nửa đường tròn Bài 14 Cho điểm C thuộc đoạn thẳng AB cho AC = 10 Cm, CB = 40 Cm Vẽ phía AB nửa đường trịn có đường kính theo thứ tự AB, AC, CB có tâm theo thứ tự O, I, K Đường vng góc với AB C cắt nửa đường tròn (O) E Gọi M N theo thứ tự giao điểm EA, EB với nửa đường tròn (I), (K) Ta có: ∠BNC= 900( nội tiếp chắn nửa 1.Chứng minh EC = MN đường tròn tâm K) 2.Ch/minh MN tiếp tuyến chung nửa đ/tròn (I), (K) 3.Tính MN 4.Tính diện tích hình giới hạn ba nửa đường tròn Lời giải: => ∠ENC = 900 (vì hai góc kề bù) (1) ∠AMC = 900 ( nội tiếp chắn nửc đường tròn tâm I) => ∠EMC = 900 (vì hai góc kề bù).(2) ∠AEB = 900 (nội tiếp chắn nửa đường tròn tâm O) hay ∠MEN = 900 (3) Từ (1), (2), (3) => tứ giác CMEN hình chữ nhật => EC = MN (tính chất đường chéo hình chữ nhật ) Theo giả thiết EC ⊥AB C nên EC tiếp tuyến chung hai nửa đường tròn (I) (K) => ∠B1 = ∠C1 (hai góc nội tiếp chắn cung CN) Tứ giác CMEN hình chữ nhật nên => ∠C1= ∠N3 => ∠B1 = ∠N3.(4) Lại có KB = KN (cùng bán kính) => tam giác KBN cân K => ∠B1 = ∠N1 (5) Từ (4) (5) => ∠N1 = ∠N3 mà ∠N1 + ∠N2 = ∠CNB = 900 => ∠N3 + ∠N2 = ∠MNK = 900 hay MN ⊥ KN N => MN tiếp tuyến (K) N Chứng minh tương tự ta có MN tiếp tuyến (I) M, Vậy MN tiếp tuyến chung nửa đường trịn (I), (K) Ta có ∠AEB = 900 (nội tiếp chắn nửc đường tròn tâm O) => ∆AEB vng A có EC ⊥ AB (gt) => EC2 = AC BC  EC2 = 10.40 = 400 => EC = 20 cm Theo EC = MN => MN = 20 cm Theo giả thiết AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta có S(o) = π OA2 = π 252 = 625 π ; S(I) = π IA2 = π 52 = 25 π ; S(k) = π KB2 = π 202 = 400 π Ta có diện tích phần hình giới hạn ba nửa đường trịn S = ( S(o) - S(I) - S(k)) 1 S = ( 625 π - 25 π - 400 π ) = 200 π = 100 π ≈ 314 (cm2) 2 Bài 15 Cho tam giác ABC vuông A Trên cạnh AC lấy điểm M, dựng đường trịn (O) có đường kính MC đường thẳng BM cắt đường tròn (O) D đường thẳng AD cắt đường tròn (O) S Chứng minh ABCD tứ giác nội tiếp Chứng minh CA tia phân giác góc SCB Gọi E giao điểm BC với đường tròn (O) Chứng minh đường thẳng BA, EM, CD đồng quy TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP Chứng minh DM tia phân giác góc ADE Chứng minh điểm M tâm đường tròn nội tiếp tam giác ADE Lời giải: Ta có ∠CAB = 900 ( tam giác ABC vng A); ∠MDC = 900 ( góc nội tiếp chắn nửa đường trịn ) => ∠CDB = 900 D A nhìn BC góc 900 nên A D nằm đường trịn đường kính BC => ABCD tứ giác nội tiếp ABCD tứ giác nội tiếp => ∠D1= ∠C3( nội tiếp chắn cung AB) ¼ ¼ ∠D1= ∠C3 => SM = EM => ∠C2 = ∠C3 (hai góc nội tiếp đường tròn (O) chắn hai cung nhau) => CA tia phân giác góc SCB Xét ∆CMB Ta có BA⊥CM; CD ⊥ BM; ME ⊥ BC BA, EM, CD ba đường cao tam giác CMB nên BA, EM, CD đồng quy ¼ ¼ Theo Ta có SM = EM => ∠D1= ∠D2 => DM tia phân giác góc ADE.(1) Ta có ∠MEC = 900 (nội tiếp chắn nửa đường trịn (O)) => ∠MEB = 900 Tứ giác AMEB có ∠MAB = 900 ; ∠MEB = 900 => ∠MAB + ∠MEB = 1800 mà hai góc đối nên tứ giác AMEB nội tiếp đường tròn => ∠A2 = ∠B2 Tứ giác ABCD tứ giác nội tiếp => ∠A1= ∠B2( nội tiếp chắn cung CD) => ∠A1= ∠A2 => AM tia phân giác góc DAE (2) Từ (1) (2) Ta có M tâm đường tròn nội tiếp tam giác ADE TH2 (Hình b) Câu : ∠ABC = ∠CME (cùng phụ ∠ACB); ∠ABC = ∠CDS (cùng bù ∠ADC) => ∠CME = ∠CDS » » ¼ ¼ => CE = CS => SM = EM => ∠SCM = ∠ECM => CA tia phân giác góc SCB Bài 16 Cho tam giác ABC vuông A.và điểm D nằm A B Đường trịn đường kính BD cắt BC E Các đường thẳng CD, AE cắt đường tròn F, G Chứng minh : hai góc đối nên ADEC Tam giác ABC đồng dạng với tam giác EBD tứ giác nội tiếp Tứ giác ADEC AFBC nội tiếp AC // FG Các đường thẳng AC, DE, FB đồng quy Lời giải: Xét hai tam giác ABC EDB Ta có ∠BAC = 900 ( tam giác ABC vng A); ∠DEB = 900 ( góc nội tiếp chắn nửa đường tròn ) => ∠DEB = ∠BAC = 900 ; lại có ∠ABC góc chung => ∆DEB ∼ ∆ CAB Theo ∠DEB = 900 => ∠DEC = 900 (vì hai góc kề bù); ∠BAC = 900 ( ∆ABC vng A) hay ∠DAC = 900 => ∠DEC + ∠DAC = 1800 mà 10 TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP · · · · · · d) ODEO’ nội tiếp Thực : DOA = DCA ; EO'A = EFA mà DCA = EFA (gúc nội tiếp chắn · · · · · · cung DE) ⇒ DOA = EO'A ; mặt khỏc: DAO = EAO' (đ/đ) ⇒ ODO' = O'EO ⇒ ODEO’ nội tiếp Nếu DE tiếp xỳc với (O) (O’) thỡ ODEO’ hỡnh chữ nhật ⇒ AO = AO’ = AB Đảo lại : AO = AO’ = AB kết luận DE tiếp tuyến chung (O) (O’) Kết luận : Điều kiện để DE tiếp tuyến chung (O) (O’) : AO = AO’ = AB Bài 57: Cho đường trũn (O; R) cú đường kính cố định AB ⊥ CD a) Chứng minh: ACBD hỡnh vuụng b) Lấy điểm E di chuyển cung nhỏ BC (E ≠ B; E ≠ C) Trên tia đối tia EA lấy đoạn EM = EB · Chứng tỏ: ED tia phân giác AEB ED // MB c) Suy CE đường trung trực BM M di chuyển đường trũn mà ta phải xỏc định tâm bán kính theo R HD: a) AB ⊥ CD ; OA = OB = OC = OD = R(O) C ⇒ ACBD hỡnh vuụng E // M · · 0 · · b) AED = AOD = 45 ; DEB = DOB = 45 = 2 · · · ⇒ AED = DEB ⇒ ED tia phõn giỏc AEB B A O 0 · · AED = 45 ; EMB = 45 (∆ EMB vuụng cõn E) · · ⇒ AED = EMB (2 góc đồng vị) ⇒ ED // MB c) ∆ EMB vuụng cõn E CE ⊥ DE ; ED // BM ⇒ CE ⊥ BM ⇒ CE đường trung trực BM D d) Vỡ CE đường trung trực BM nên CM = CB = R Vậy M chạy đường trũn (C ; R’ = R ) Bài 58: Cho ∆ABC đều, đường cao AH Qua A vẽ đường thẳng phía ngồi tam giác, tạo với cạnh AC góc 400 Đường thẳng cắt cạnh BC kéo dài D Đường trũn tõm O đường kính CD cắt AD E Đường thẳng vng góc với CD O cắt AD M a Chứng minh: AHCE nội tiếp Xác định tâm I đường trũn b Chứng minh: CA = CM c Đường thẳng HE cắt đường trũn tõm O K, đường thẳng HI cắt đường trũn tõm I N cắt đường thẳng DK P Chứng minh: Tứ giác NPKE nội tiếp Bài 59: BC dây cung đường trũn (O; R) (BC ≠ 2R) Điểm A di động cung lớn BC cho O nằm ∆ABC Các đường cao AD; BE; CF đồng quy H a Chứng minh:∆AEF ~ ∆ABC b Gọi A’ trung điểm BC Chứng minh: AH = 2.A’O c Gọi A1 trung điểm EF Chứng minh: R.AA1 = AA’.OA’ d Chứng minh: R.(EF + FD + DE) = 2.SABC Suy vị trí điểm A để tổng (EF + FD + DE) đạt GTLN Bài 60: Cho đường trũn tõm (O; R) cú AB đường kính cố định cũn CD đường kính thay đổi Gọi (∆) tiếp tuyến với đường trũn B AD, AC cắt (∆) Q P a Chứng minh: Tứ giác CPQD nội tiếp b Chứng minh: Trung tuyến AI ∆AQP vuụng gúc với DC c Tỡm tập hợp cỏc tõm E đường trũn ngoại tiếp ∆CPD 31 TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP µ Bài 61: Cho ∆ABC cõn (AB = AC; A < 900), cung trũn BC nằm bờn ∆ABC tiếp xỳc với AB, AC B C Trờn cung BC lấy điểm M hạ đường vng góc MI, MH, MK xuống cạnh tương ứng BC, CA, AB Gọi Q giao điểm MB, IK a Chứng minh: Các tứ giác BIMK, CIMH nội tiếp · b Chứng minh: tia đối tia MI phân giác HMK c Chứng minh: Tứ giác MPIQ nội tiếp ⇒ PQ // BC Bài 62: Cho nửa đường trũn (O), đường kính AB, C trung điểm cung AB; N trung điểm BC Đường thẳng AN cắt nửa đường trũn (O) M Hạ CI ⊥ AM (I ∈ AM) C a Chứng minh: Tứ giác CIOA nội tiếp đường trũn b Chứng minh: Tứ giỏc BMCI hỡnh bỡnh hành M = · · c Chứng minh: MOI = CAI N d Chứng minh: MA = 3.MB I = · · HD: a) COA = 900 (…) ; CIA = 900 (…) ⇒ Tứ giỏc CIOA nội tiếp (quĩ tớch cung chứa gúc 900) O B A b) MB // CI ( ⊥ BM) (1) · · ∆ CIN = ∆ BMN (g.c.g) ¶N1 = ¶ (đ/đ) ; NC = NB ; NCI = NBM (slt) N ⇒ CI = BM (2) Từ ⇒ BMCI hỡnh bỡnh hành 1· · · c) ∆ CIM vuụng cõn ( CIA = 900 ; CMI = COA = 45 ) ⇒ MI = CI ; ∆ IOM = ∆ IOC vỡ OI chung ; · · · · · · IC = IM (c.m.t) ; OC = OM = R(O) ⇒ MOI = IOC mà: IOC = CAI ⇒ MOI = CAI R AC d) ∆ ACN vuụng cú : AC = R ; NC = (với R = AO) = 2 R2 R 10 NC2 R 10 MI Từ : AN = AC2 +CN = 2R + ; NI = =R = = = MN = 2 NA 10 ⇒ MB = 3R 10 R2 R2 2R R 10 ⇒ AM = AN + MN = R 10 + R 10 = NC − MN = − = = 10 10 10 2 ⇒ AM = BM µ Bài 63: Cho ∆ABC cú A = 600 nội tiếp đường trũn (O), đường cao AH cắt đường trũn D, đường cao BK cắt AH E · · a Chứng minh: BKH = BCD · b Tớnh BEC c Biết cạnh BC cố định, điểm A chuyển động cung lớn BC Hỏi tâm I đườngtrũn nội tiếp ∆ABC chuyển động đường nào? Nêu cách dựng đường (chỉ nêu cách dựng) cách xác định rừ nú (giới hạn đường đó) d Chứng minh: ∆IOE cõn I A · · HD: a) ABHK nội tiếp ⇒ BKH = BAH ; · · · · BCD = BAH ( cựng chắn cung BD) ⇒ BCD = BKH K b) CE cắt AB F ; · · AFEK nội tiếp ⇒ FEK = 1800 − ¶A = 1800 − 600 = 1200 ⇒ BEC = 120 F 32 E I TUYỂN TẬP 80 BÀI TỐN HèNH HỌC LỚP ¶B + ¶C 1200 · c) BIC = 1800 − = 180 − = 1200 2 Vậy I chuyển động cung chứa góc 1200 dựng đoạn BC, cung B H nằm đường trũn tõm (O) º » IO DS · · D S d) Trong đ/trũn (O) cú DAS = sđ ; đ/trũn (S) cú ISO = sđ 2 º » DS IO º · · » º º vỡ DAS = ISO (so le trong) nờn: = mà DS = IE ⇒ IO = IE ⇒ đpcm 2 C Bài 64: Cho hỡnh vuụng ABCD, phớa hỡnh vuụng dựng cung phần tư đường trũn tõm B, bỏn kớnh AB nửa đường trũn đường kính AB Lấy điểm P cung AC, vẽ PK ⊥ AD PH ⊥ AB Nối PA, cắt nửa đường trũn đường kính AB I PB cắt nửa đường trũn M Chứng minh C D rằng: a I trung điểm AP b Các đường PH, BI AM đồng quy c PM = PK = AH d Tứ giỏc APMH hỡnh thang cõn P K · HD: a) ∆ ABP cõn B (AB = PB = R(B)) mà AIB = 900 (gúc nội tiếp …) M ⇒ BI ⊥ AP ⇒ BI đường cao đường trung tuyến ⇒ I trung điểm AP I b) HS tự c/m c) ∆ ABP cõn B ⇒ AM = PH ; AP chung ⇒ ∆vAHP = ∆v PMA ⇒ AH = PM ; AHPK hỡnh chữ nhật ⇒ AH = KP ⇒ PM = PK = AH d) PMAH nằm đ/trũn đ/k AP mà PM = AH (c.m.t) B A H » » ⇒ PM = AH ⇒ PA // MH Vậy APMH hỡnh thang cõn Bài 65: Cho đường trũn tõm O, đường kính AB = 2R Kẻ tia tiếp tuyến Bx, M điểm thay đổi Bx; AM cắt (O) N Gọi I trung điểm AN a Chứng minh: Tứ giác BOIM nội tiếp đường trũn b Chứng minh:∆IBN ~ ∆OMB c Tỡm vị trớ điểm M tia Bx để diện tích tam giác AIO có GTLN H O · · A B HD: a) BOIM nội tiếp vỡ OIM = OBM = 900 · · · · b) INB = OBM = 90 ; NIB = BOM (2 gúc nội tiếp cựng chắn cung BM) ⇒ ∆ IBN ~ ∆OMB I c) SAIO = AO.IH; SAIO lớn ⇔ IH lớn vỡ AO = R(O) N M Khi M chạy trờn tia Bx thỡ I chạy trờn nửa đường trũn đ/k AO Do SAIO lớn · Khi IH bán kính, ∆ AIH vng cân, tức HAI = 450 Vây M cách B đoạn BM = AB = 2R(O) thỡ SAIO lớn Bài 66: Cho ∆ ABC đều, nội tiếp đường trũn (O; R) Gọi AI đường kính cố định D điểm di động cung nhỏ AC (D ≠ A D ≠ C) A · a Tớnh cạnh ∆ABC theo R chứng tỏ AI tia phõn giỏc BAC D b Trên tia DB lấy đoạn DE = DC Chứng tỏ ∆CDE DI ⊥ CE c Suy E di động đường trũn mà ta phải xỏc định tâm giới hạn = d Tớnh theo R diện tớch ∆ADI lỳc D điểm cung nhỏ AC 33 E O = TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP HD: a) ∆ ABC đều, nội tiếp đường trũn (O; R) HS tự c/m : ⇒ AB = AC = BC = R Trong đ/trũn (O; R) cú: AB = AC ⇒ Tâm O cách cạnh AB AC C B · ⇒ AO hay AI tia phõn giỏc BAC · · » b) Ta cú : DE = DC (gt) ⇒ ∆ DEC cõn ; BDC = BAC = 600 (cựng chắn BC ) I º » º · · ⇒ ∆CDE I điểm BC ⇒ IB = IC ⇒ BDI = IDC · ⇒ DI tia phõn giỏc BDC ⇒ ∆CDE có DI tia phân giác nên đường cao ⇒ DI ⊥ CE c) ∆CDE có DI đường cao đường trung trực CE ⇒ IE = IC mà I C cố định ⇒ » IC không đổi ⇒ E di động đ/trũn cố định tâm I, bán kính = IC Giới hạn : I ∈ AC (cung nhỏ ) » D → C thỡ E → C ; D → A thỡ E → B ⇒ E động BC nhỏ đ/t (I; R = IC) chứa ∆ ABC Bài 67: Cho hỡnh vuụng ABCD cạnh a Trờn AD DC, người ta lấy điểm E F cho : a AE = DF = a So sỏnh ∆ABE ∆DAF Tớnh cỏc cạnh diện tớch chỳng b Chứng minh AF ⊥ BE c Tớnh tỉ số diện tớch ∆AIE ∆BIA; diện tớch ∆AIE ∆BIA diện tớch cỏc tứ giỏc IEDF IBCF µ Bài 68: Cho ∆ABC có góc nhọn; A = 450 Vẽ đường cao BD CE Gọi H giao điểm BD, CE a Chứng minh: Tứ giác ADHE nội tiếp đường trũn.; b Chứng minh: HD = DC DE c Tớnh tỷ số: d Gọi O tâm đường trũn ngoại tiếp ∆ABC Chứng minh: OA ⊥ DE BC Bài 69: Cho hỡnh bỡnh hành ABCD cú đỉnh D nằm đường trũn đường kính AB Hạ BN DM vng góc với đường chéo AC Chứng minh: a Tứ giác CBMD nội tiếp đường trũn · · b Khi điểm D di động đường trũn thỡ ( BMD + BCD ) không đổi c DB.DC = DN.AC Bài 70: Cho ∆ABC nội tiếp đường trũn (O) Gọi D điểm cung nhỏ BC Hai tiếp tuyến C D với đường trũn (O) cắt E Gọi P, Q giao điểm cặp đường thẳng AB CD; AD CE Chứng minh: a BC // DE b Các tứ giác CODE, APQC nội tiếp c Tứ giỏc BCQP hỡnh gỡ? Bài 71: Cho đường trũn (O) (O’) cắt A B; cỏc tiếp tuyến A cỏc đường trũn (O) (O’) cắt đường trũn (O) (O’) theo thứ tự C D Gọi P Q trung điểm dây AC AD Chứng minh: a ∆ABD ~ ∆CBA · · b BQD = APB c Tứ giỏc APBQ nội tiếp Bài 72: Cho nửa đường trũn (O), đường kính AB Từ A B kẻ tiếp tuyến Ax By Qua điểm M thuộc nửa đường trũn này, kẻ tiếp tuyến thứ ba, cắt cỏc tiếp tuyến Ax By E F 34 TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP a Chứng minh: AEMO tứ giác nội tiếp b AM cắt OE P, BM cắt OF Q Tứ giỏc MPOQ hỡnh gỡ? Tại sao? c Kẻ MH ⊥ AB (H ∈ AB) Gọi K giao điểm MH EB So sánh MK với KH d.Cho AB = 2R gọi r bán kính đường trũn nội tiếp ∆EOF Chứng minh: r < < R Bài 73: Từ điểm A đường trũn (O) kẻ tiếp tuyến AB, AC cỏt tuyến AKD cho BD//AC Nối BK cắt AC I a Nờu cỏch vẽ cỏt tuyến AKD cho BD//AC b Chứng minh: IC2 = IK.IB · c Cho BAC = 600 Chứng minh: Cát tuyến AKD qua O Bài 74: Cho ∆ABC cân A, góc A nhọn Đường vng góc với AB A cắt đường thẳng BC E Kẻ EN ⊥ AC Gọi M trung điểm BC Hai đ/thẳng AM EN cắt F a Tỡm tứ giỏc cú thể nội tiếp đường trũn Giải thớch vỡ sao? Xỏc định tâm đường trũn b Chứng minh: EB tia phõn giỏc ∠AEF c Chứng minh: M tâm đường trũn ngoại tiếp VAFN Bài 75: Cho nửa đường trũn tõm (O), đường kính BC Điểm A thuộc nửa đường trũn Dựng hỡnh vuụng ABED thuộc nửa mặt phẳng bờ AB, khụng chứa đỉnh C Gọi F giao điểm AE nửa đường trũn (O) K giao điểm CF ED a Chứng minh: Bốn điểm E, B, F, K nằm đường trũn b ∆BKC tam giỏc gỡ? Vỡ sao? c Tỡm quỹ tớch điểm E A di động nửa đường trũn (O) AB Trên cạnh BC lấy điểm E (E khác B C) Từ B kẻ đường thẳng d vng góc với AE, gọi giao điểm d với AE, AC kéo dài I, K · a Tính độ lớn góc CIK b Chứng minh: KA.KC = KB.KI; AC2 = AI.AE – AC.CK c Gọi H giao điểm đường trũn đường kính AK với cạnh AB Chứng minh: H, E, K thẳng hàng d Tỡm quỹ tớch điểm I E chạy BC Bài 76: Cho ∆ABC vuụng C, cú BC = Bài 77: Cho ∆ABC vuông A Nửa đường trũn đường kính AB cắt BC D Trên cung AD lấy điểm E Nối BE kéo dài cắt AC F a Chứng minh: CDEF nội tiếp · b Kộo dài DE cắt AC K Tia phõn giỏc CKD cắt EF CD M N Tia phõn giỏc · CBF cắt DE CF P Q Tứ giỏc MPNQ hỡnh gỡ? Tại sao? c Gọi r, r1, r2 theo thứ tự bán kính đường trũn nội tiếp cỏc tam giỏc ABC, ADB, ADC Chứng minh: r2 = r12 + r22 Bài 78: Cho đường trũn (O;R) Hai đường kính AB CD vng góc với E điểm cung nhỏ BC; AE cắt CO F, DE cắt AB M a Tam giỏc CEF EMB cỏc tam giỏc gỡ? b Chứng minh: Tứ giỏc FCBM nội tiếp Tỡm tõm đường trũn c Chứng minh: Cấc đường thẳng OE, BF, CM đồng quy 35 TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP Bài 79: Cho đường trũn (O; R) Dõy BC < 2R cố định A thuộc cung lớn BC (A khác B, C khơng trùng điểm cung) Gọi H hỡnh chiếu A trờn BC; E, F thứ tự hỡnh chiếu B, C trờn đường kính AA’ a Chứng minh: HE ⊥ AC b Chứng minh: ∆HEF ~ ∆ABC c Khi A di chuyển, chứng minh: Tâm đường trũn ngoại tiếp ∆HEF cố định Bài 80: Cho ∆ ABC vuụng A Kẻ đường cao AH Gọi I, K tương ứng tâm đường trũn nội tiếp ∆ ABH ∆ ACH 1) Chứng minh ∆ ABC ~ ∆ HIK 2) Đường thẳng IK cắt AB, AC M N a) Chứng minh tứ giác HCNK nội tiếp đường trũn b) Chứng minh AM = AN c) Chứng minh S’ ≤ S , S, S’ diện tích ∆ ABC ∆ AMN 36 ... ∠DEB = 90 0 => ∠DEC = 90 0 (vì hai góc kề bù); ∠BAC = 90 0 ( ∆ABC vng A) hay ∠DAC = 90 0 => ∠DEC + ∠DAC = 1800 mà 10 TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP * ∠BAC = 90 0 ( tam giác ABC vng A); ∠DFB = 90 0... quy TUYỂN TẬP 80 BÀI TOÁN HèNH HỌC LỚP Chứng minh DM tia phân giác góc ADE Chứng minh điểm M tâm đường tròn nội tiếp tam giác ADE Lời giải: Ta có ∠CAB = 90 0 ( tam giác ABC vng A); ∠MDC = 90 0 ( góc... Ta có SP ⊥ AB (gt) => ∠SPA = 2.Chứng minh PM tiếp tuyến đường tròn 90 0 ; ∠AMB = 90 0 ( nội tiếp chắn TUYỂN TẬP 80 BÀI TỐN HèNH HỌC LỚP nửa đường trịn ) => ∠AMS = 90 0 Như P M nhìn AS góc 90 0

Ngày đăng: 04/06/2014, 21:12

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan