0
  1. Trang chủ >
  2. Giáo Dục - Đào Tạo >
  3. Cao đẳng - Đại học >

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 15 pps

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 15 pps

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 15 pps

... Inc.assuchanalysesassumesampleindependence.Thisinformationisvaluableinthedesignofsamplingstrategiesforbioindicatorsasanunderstandingoftherepresentativenessofsamplesofalargerareaiscritical.Thethirdimportantfeatureisthenugget.Theoretically,whenthelagdistanceiszero(samplestakenatthesamepoint)thereshouldbenovariance.OftenthesemivariograminterceptsalongtheYaxis,notattheorigin,andthisisknownasthenuggeteffect.Presenceofanuggetindicateseithermeasurementerrororspatialstructureoverdistancesshorterthantheintervalsbetweensamplinglocations.Structuralvarianceisthefourthpropertycharacterizedbythesemivariogram.Thisvalue,whichisoftenexpressedasaratiobetweenthevariancenotexplainedbythenuggetandthetotalvariance,quantifiestheamountofvariancearisingfromtheunderlyingspatialstructure.Thegreatertheratio,themorespatiallydependentthesoilparameteris.Informationgener-atedinthevariogramisthenusedforkriging.Krigingallowsmaps(Fig.3)thatpredictparameter ... Marcel Dekker, Inc.acid proline (34) and the latter including polyamines such as spermidine and putrescine(35). The activities of certain plant enzymes, such as peroxidases and catalases, can ... that is outside the cell, and the significanceof these and other enzymes in soil microbial ecology has been reviewed (14). These extra-cellular enzymes are often relatively stable and can persist...
  • 15
  • 505
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

... aspartase-Ca-montmoril-lonite systems (159 ). Deamination of l- and d-glutamic and aspartic amino acids and oftheir DL racemic mixtures in the presence of Na-montmorillonite showed a stereoselectiv-ity ... effective for both L- and D- glutamic acid. The PLP-Cu2ϩ-smectitehas acted as a ‘‘pseudoenzyme’’ wherein the PLP was active and independent of the protein matrix of the enzyme and the silicate structure ... phenylalanine, proline, methionine, and cysteine by birnessite, and the role of pyrogallol in influencing their mineralizationhave been investigated (152 ,153 ). Nitrogen mineralization was inhibited by pyrogallol,whereas...
  • 46
  • 555
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 11 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 11 ppsx

... Inc.possibletofindseveralexplanationstointerpretaproteinadsorptionisotherm,withnoexperimentalevidenceavailabletochooseamongthem.TheadvantageoftheNMRmethodisthatitsimultaneouslygivesthequantityofadsorbedprotein,thesurfacecover-ageofthesolidbytheprotein,andthemonolayerormultilayermodeofadsorption(16).Onlyknowledgeofthesethreefactorsallowsapossibleunfoldingoftheproteinsontheclaysurfacestobedetectedandquantified.1.NuclearMagneticResonanceDetectionoftheExchangeofaParamagneticCationonProteinAdsorptiononClaysTheprincipleofthemethod(16)isbasedonthefactthattheadsorptionofproteinsonclayscausesthereleaseofcharge-compensatingcations(7,17).ItalsousesthesensitivityoftherelaxationtimesT1andT2ofnuclearspinstoparamagneticcationsinNMRspectros-copy(18,19).Asmallquantity(between 3and2 0µMdependingonthepH)ofaparamagneticcation,Mn2ϩ,isaddedtoasodium-saturatedmontmorillonitesuspension(1gLϪ1)witha10-mMconcentrationoforthophosphate.Thesuspensionisstudiedby31PNMRspec-troscopy.Aninterestingphenomenonisobserved:(1)theMn2ϩcationsthatareadsorbedontheclaysurfacedonotinteractatallwiththeorthophosphate,asshownbythecompari-sonbetweentheclaysuspensionandsupernatantafterremovaloftheclaybycentrifuga-tion ;and( 2)theMn2ϩcationsinsolutioninteractwiththeorthophosphate,leadingtoalinearincreaseofthelinewidthathalfheight,∆ν1/2,oftheorthophosphatepeakontheNMRspectrum.Thislasteffectistheresultoftheparamagneticcontributiontothede-creaseofthespin–spinrelaxationtime,T2,oftheorthophosphatesignal.Whenagivenquantityofproteinisintroducedintothissuspension,itdisturbstheequilibriumbetweentheparamagneticMn2ϩadsorbedontheclaysurfaceandthatinsolution.Theanalysisoftheresultinglinewidthoftheorthophosphosphatesignalgivesthequantityofcationsexchangedonadsorption.Witha300-MHzNMRspectrometer,themeasurementtakesafewminutes;witha500-MHzspectrometer,1minissufficient(evenlessifhigherconcentrationsofortho-phosphateareused).Asnocentrifugationisrequiredwiththismethod,thisshorttimeofsignalacquisitioniscompatiblewithkineticstudies.Theresultsareexpressedas∆νP,whichisthedifferencebetween∆ν1/2inthesystemwithparamagneticcationsand∆ν1/2inacontrolofthesamecomposition,(butwithoutparamagneticcations)dividedbytheconcentrationofparamagneticcations.ThesurfacecoverageoftheclaybytheproteincanbededucedfromthefractionofMn2ϩreleased.Theknowledgeofboththequantityofproteinadsorbedandthesurfacecoverageofthesolidallowsthecalculationoftheinterfacialareaofcontactbetweenasingleproteinmoleculeandtheclaysurfaceatdiffer-entpHandionicstrengths.2.ConformationalChangesonAdsorptionofaSoftProtein,BovineSerumAlbumina.DescriptionoftheProgressiveSurfaceCoverageoftheClayFigure1shows the ... (2) a possi-ble unfolding of the protein on the surface changing the interfacial area between individualprotein and surface and the quantity of protein adsorbed at saturation; (3) the surfacecoverage ... contrast to the three preceding models, which assume that the enzymes retain the sameconformation in the adsorbed state and in solution, another model is based on a pH-depen-dent unfolding of the enzyme...
  • 22
  • 424
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 12 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 12 ppsx

... systems, lasR-lasI and rhlR-rhlI. The lasI and rhlI gene productsare involved in the synthesis of two different AHL molecules, N-(3-oxododecanoyl)-l-homoserine lactone and N-buytryl-l-homoserine lactone, ... components in- clude β-galactosidase, β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase, - and β-mannosidase, and α-fucosidase (116). Other bacteria then produce proteolytic enzymes, such ... Inc.Microbialmatsareexamplesofthicklylayeredbiofilmsofphotosyntheticmicro-organismsattachedtorocksandsedimentparticlesinaqueoushabitats(25).Theyareoftenfoundunderextremeenvironmentalconditions.Forexample,inthevicinityofdeepseahydrothermalvents,microorganismswithinbiofilmssurviveextremetemperatures(86,87).HotspringsareanotherextremehabitatwherebothhightemperaturesandsulfideconcentrationsharbormatscontaininglayersprimarilycomposedofArchaea,includingsulfate-reducingpurplebacteria(e.g.,Chloroflexisspp.,Chromatiumspp.,Thiopediaro-seopersicinia)inassociationwithcyanobacteria(25).Additionalextremeenvironmentswheremicrobialmatsmaybefoundincludehypersalinelakes(88),terrestrialdesertswithcyclicaldroughtanddesiccation,sodalakesandacidthermalwaterscontainingextremepHconditions,andregionswithhighlevelsofultraviolet(UV)irradiation(88).Themicro-bialspeciesthatarefoundintheseextremeenvironmentsarelimitedtoprimarilycyano-bacteria(e.g.,OscillatoriaandSpirulinaspp.)andotherssuchasDesulfovibriospp.,Beg-giatoaspp.,andThiovulumspp.,withdifferingandvaryingdegreesoftolerance(89).Althoughmatsareprimarilycomposedofprokaryotes,otherorganisms,suchastheeukar-yoticCyanidiumsp.,havebeenfoundatpHlevelsbelow4.5(89).Studieshaveshownthatmostoftheorganismswithinamatareoftennotphysiologicallyadaptedtotheextremeenvironmentbutgrowthwithinlayersofathickbiofilmhelpsthemsurviveandfindasuitablemicroniche(89).Microbialmatsareagoodexampleoftheprotectivenatureofbiofilmgrowthandthemethodwithwhichstratificationcanencouragenutrientavailabilityandcycling(90).Biofilmshavebeenobservedatotheraquaticinterfacesbesidesthoseatasolid–liquidinterface.Forexample,instagnantwaters,biofilmsaresometimesfoundattheair–liquidinterfaceandareoftenseenasbrownorgreenlayerscomposedofalgaeandotheraquaticmicroorganisms.Anotherexampleisthewaxytypebiofilmattheair–liquidinter-faceformedfromtherugosephenotypeofVibriocholeraeisolatedfromstarvationme-dium(91).Theinterfacebetweenjetfuelsandwatercanalsoharborbiofilmgrowth,suchasthefungusCladosporiumresinae(92).VII.NONAQUATICENVIRONMENTSAlthoughbiofilmshaveoftenbeenstudiedinaquaticenvironments,morerecentstudieshaveshownthatmicroorganismswithinthickEPSmatricesorbiofilmsarealsofoundinnonaquaticenvironmentssuchastherhizosphere (Chapter4 ),soil,andsubsurfaceenviron-ments(93,94).Oneofthemorecomplexenvironmentsisthesoilecosystem,withitsmanydifferentparticlesandporespaces(95).Microorganismsinthesoiladheretosurfacessuchasinorganicsolidparticles,humicmatter,plantmaterial(roots),andmicrofauna.Plantsprovidelargeamountsofcarbonandothernutrientstoencouragemicrobialgrowthinthevicinityoftheroots ,and, inturn,themicroorganismsfixnitrogen,assisttheplantinadsorptionofnutrientsfromthesoil,andprotecttherootsagainstpathogens.Anotherexampleofanonaquaticbiofilmisthecolonizationoftheleavesofplants—thephyllo-sphere(96 ;Chapter6 ).Thesebiofilmsconsistofadiversepopulationofmicroorganisms,including...
  • 20
  • 468
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

... Inc.Currently,itisevidentthatmicroorganismsformcomplexmicrobialfoodwebsinallaquaticecosystems,andthattheiractivitiesandmetabolismsoftenaretightlycoupled and/ ormutuallyaffected(132,143,144).Therefore,itisnotsurprisingthatenzymaticpropertiesandactivitiesofdifferentcomponentscreatingthemicrobialfoodwebsinlakeecosystemshavedemonstratedcloserelationships.Severalreportshavedocumentedthestrongdependencyofbacterialsecondaryproductiononectoenzymeactivitiesofaquaticmicroorganisms(2–4,16,17,19,25,28,29,33,36,59).Thereoftenisasignificantcorrelationbetweenphytoplanktonprimaryproductionandactivitiesofdifferentectoenzymesinfreshwaterecosystems(25,28,29,33,52).Ourstudiesinlakesofdifferingdegreesofeutrophicationhaveshownmicrobialesteraseactivitytobepositivelycorrelatedtophytoplanktonprimaryproduction,bacterialsecondaryproduction,andconcentrationofdissolvedorganiccarbon(DOC)(Fig.13).Wehavefoundasignificantnegativerelationshipbetweenenzymeactivityandtheper-centageofphytoplanktonextracellularrelease(PER)ofphotosyntheticorganiccarboninthestudiedlakes.ThisnegativecorrelationbetweenPERandesteraseactivityindicatedthatenzymesynthesiswaspartiallyinhibitedinbacteriabylow-molecular-weightphoto-syntheticproductsofphytoplanktonthatwerereadilyutilizedbythesemicroheterotrophs:i.e.,catabolicrepressionofesterasesynthesiswasfoundinlakescharacterizedbyhighPERofphytoplankton(29,33).VIII.ECTOENZYMEACTIVITYANDLAKEWATEREUTROPHICATIONTheimportanceoforganicmatterasavariableforevaluatingthetrophicstatusoflakeshasbeenrecognizedsincethebeginningofthe20thcentury(145,146).Increasingconcen-trationsoforganicconstituentsinwaterarethedistinctindicatorsofacceleratedeutrophi-cationprocessesinmanylakes(147–149).OurstudiesclearlydemonstratedthatenzymeactivitiesweresignificantlypositivelyproportionaltoDOCcontentoflakes(Fig.13C).Asdescribedearlierinthischapter,severalmicrobialectoenzymesareresponsibleforrapidtransformationanddegradationofbothdissolvedorganicmatterandPOMinfresh-waterecosystems.Therefore,wehypothesizethatan‘‘enzymaticapproach’’canbeveryusefulinthestudiesoflakeeutrophication.Severalreportspointedoutthatmicrobialenzymaticactivitieswerecloselyrelatedtotheindicesofwatereutrophicationand/orthetrophicstatusofaquaticecosystems(25,27,29,31,33,38,52,58,62,78).Ourstudiesalongthetrophicgradientoflakes(fromoligo/mesotrophictohypereutrophiclakes[Fig.14A]supportourhypothesis(andtheassumptionsofothers)thatselectedenzymaticmicrobialactivitiesareverypracticalforarapidrecognitionofthecurrenttrophicstatusoflakes.Activitiesofalkalinephosphatase,esterase,andaminopeptidaseincreasedexponentiallyalongatrophicgradientandcorre-latedsignificantlywiththetrophicstateindexofthestudiedlakes(Fig.14B,C,D).Wealsofoundastrongrelationshipbetweenactivitiesofectoenzymesandphytoplanktonprimaryproductionintheselakes.RapidincreasesinectoenzymeactivitieswereobservedespeciallyinarangeofgraduallyeutrophiclakeswhenthevalueofCarlson’strophicstateindex(TSI)wasabove55 (150 )(Fig.14).Moreover, ... Inc.lakewater.Figures2Band2CshowthatectoenzymesynthesisinDOM-enrichedsampleswasnolongerrepressedwhentheconcentrationofthereadilyutilizablelowmolecular-weightmoleculesfellbelowacriticallevel,andpolymericsubstrateshadtobeusedtosupportthegrowthandmetabolismofbacteria.Similarinsituobservationsduringphyto-planktonbloomdevelopmentandbreakdownwerereportedforβ-glucosidaseactivityineutrophicLakePlußsee(24),forβ-glucosidaseandaminopeptidaseactivitiesinmeso-trophicLakeScho¨hsee(25),andforlipaseactivityineutrophicLakeMikołajskie(40).Despitethewidespreadoccurrenceofcatabolicrepression,withtheexceptionofthoseforentericbacteria,themoleculardetailsoftherepressionarepoorlyunderstood.Somestudieshaveindicatedthatcyclicadenosinemonophosphate(cAMP),togetherwithitsreceptorprotein,mayplayacentralroleincontrolofcatabolicrepression(41,42).Usingtherepressionstrategyforectoenzymesynthesis,microorganismscanavoidthewastefulproductionofinducibleenzymes,whicharenotusefulwhentheirgrowthisnotlimitedbyUDOM(3,19,24,35).B.InhibitionofActivityItisimportanttoconsiderthattherepression/derepressionofanectoenzymenotbeequatedtothereversibleinhibitionofactivity.Evenifanectoenzymeissynthesized,itsactivitymaybeinhibitedbytheaccumulationoftheendproductorbyhighconcentrationsofthesubstrate(19).Twogeneraltypesofreversibleinhibitionareknown:competitiveandnoncompetitiveinhibition.Competitiveinhibitionoccurswhenaninhibitingcompoundisstructurallysimilartothenaturalsubstrateand,bymimicry,bindstotheenzyme.Indoingso,itcompeteswithanenzyme’snaturalsubstratefortheactivesubstrate-bindingsite.Thehallmarkofcompetitiveinhibitionofmanyectoenzymes(e.g.,alkalinephosphatase,β-glucosidase,aminopeptidase)isthatitdecreasestheaffinityofanectoenzyme(anincreaseoftheapparentMichaelisconstantisobserved)forthesubstrateand,therefore,inhibitstheinitialvelocityofthereaction(Fig.3)(13,26,37).Competitiveinhibitionisreversibleandcanbeovercomebyincreasedsubstrateconcentration,andthereforethemaximumvelocity(Vmax)ofthereactionisunchanged(Fig.3A).Noncompetitive ... the cyto-plasmic membrane, where they hydrolyze macromolecules in close vicinity to the cell. The resulting low-molecular-weight products are then transported across the cell mem-brane and utilized...
  • 38
  • 511
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

... forchitin-hydrolyzing activity by using MUF-β-d-N, N′-diacetylchitobioside, and chitobiaseactivity was then assayed in protein extracts prepared from the positive clones. The chi-tinases of marine bacteria ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st(5)distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st(5)andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st[5])orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13,14)(Table1).Dissolvedenzymes (15) andlargeparticlesϾ8 ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st(5)distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st(5)andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st[5])orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13,14)(Table1).Dissolvedenzymes (15) andlargeparticlesϾ8...
  • 35
  • 594
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

... Inc.Althoughthisstudyinvolvedtheuseofageneticallymodifiedmicrobe,themodi - cationswerenotintendedtohaveafunctionalimpact;theywereinsertedasgeneticmark-ers.Asecondstudycomparingtheeffectofthesamegeneticallymarkedstraintothatofafunctionallymodifiedstrainshowedeffectsthataremoreinteresting(36).Theaimofthisworkwastodeterminetheimpactintherhizosphereofwildtypealongwithfunction-allyandnonfunctionallymodifiedPseudomonasfluorescensstrains.Thewild-typeF113straincarriedageneencodingtheproductionoftheantibiotic2,4-diacetylphloroglucinol(DAPG),usefulinplantdiseasecontrol,andwasmarkedwithalacZYgenecassette .The firstmodifiedstrainwasafunctionalmodificationofstrainF113withrepressedproductionofDAPG,creatingtheDAPGnegativestrainF113G22.Thesecondpairedcomparisonwasanonfunctionalmodificationofwild-type(unmarked)strainSBW25,constructedtocarrymarkergenesonly,creatingstrainSBW25EeZY-6KX.Significantperturbationswererecordedintheindigenousbacterialpopulationstruc-ture;theF113(DAPGϩ)straincausedashifttowardslower-growingcolonies(Kstrate-gists)comparedwiththenon-antibiotic-producingderivative(F113G22)andSBW25strains.TheDAPGϩstrainalsosignificantlyreduced,incomparisonwiththoseoftheotherinocula,thetotalPseudomonassp.populations,butdidnotaffectthetotalmicrobialpopulations.ThesurvivalofF113andF113G22wasanorderofmagnitudelowerthanthatoftheSBW25strains.TheDAPGϩstraincausedasignificantdecreaseintheshoot-to-rootratioincomparisontothatofthecontrolandotherinoculants,indicatingplantstress.F113increasedsoilalkalinephosphatase,phosphodiesterase,andarylsulfataseac-tivities(Table2)comparedtothoseofthecontrols.Theotherinoculareducedthesameenzyme ... Inc.Theresultsshowedlargedifferencesbetweenthe2daysofsamplinginsoilenzymeactivities(e.g.,alkalinephosphatase,Fig.2)andavailablesoilnutrients(e.g.,nitrate,Fig.3).Differenceswerefoundalsobetweenthevariousoilseedrapevarietieswithmostsoilenzymesmeasuredandwiththeavailablesoilnutrients.However,therewaslittlediffer-encebetweentheenzymeactivitiesintherhizosphereoftheGMandnon-GMplants.Themajorfactorinfluencingtheenzymeactivitiesandsoilnutrientsbetweenthetwosamplingdayswasthesoilmoisturecontent,whichwasincreasedbyovernightrain.Therefore,inthisfieldtrial,thedifferencesbetweensoilenzymeactivitieswerenotattrib-utabletoplantgeneticmodification,buttoenvironmentalvariationandtodifferencesinplantvariety.V.CONCLUSIONSClearlyenzymeactivitiesareusefulindeterminingperturbationsinthesoilenvironmentbroughtaboutbychangesinagriculturalpractices,theuseofagrochemicals,pollutionevents,ortheexploitationofgeneticallymodifiedorganisms.Biocontrolofpestsanddiseasesisameansbywhichenzymefunctionhasbeenexploited(43),butthereisevengreateropportunitytomonitorandmanipulateenzymesasgenerationsofplantnutrients,plant-growth-promotingagents,soilstructurestimulants,andbioremediationcatalysts.Althoughbioremediationhashadlessattentionthanbiocontrol,thepotentialforexploitationisenormous(44).Mostresearchhasbeenfocusedonmicrobialinoculants(bioaugmentation),butitisequallyrelevanttoconsiderhowtooptimizethefunctionoftheindigenousorganisms(biostimulation).Phytoremediation,byplantrootsthemselvesorassociatedmicrobiota(rhizoremediation),isbecominganincreasinglyinterestingcleanupsolutionforsoils.Mostattentionhasbeenpaidtoheavymetaldecontamination ,and whereasthereisinevitablysomeenzymeinvolvement,littlehasbeencharacterized.How-ever,rhizospheremicroorganismsproduceenzymesthathavethecapacitytocatabolizeawiderangeoforganicpollutants.MicrobialdehalogenationisdescribedindetailinChapters1 8and1 9,butofspecialinterestarehydrogencyanideandothernitriles.Notonly ... would in- crease the microbial P demand.Inverse trends were found with the C and N cycle enzymes in comparison to the general trend found in the P and S cycle enzymes. The F113 (DAPGϩ) strain was...
  • 15
  • 455
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

... short-chain poly-P was higher in the internal hyphae (67). Long-chain poly-P seems to be more efficient in transporting Pi from the extraradical to the intraradical part of the fungi. Activity of enzymes ... drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids.New ... Inc.4)-glucans(53).Xyloglucansare -1 ,4-glucanswithsidechainsthatcanhydrogenbondtocellulosemicrofibrils,cross-linkingthemandrestrainingcellexpansion.Inadditiontoastructuralrole,xyloglucanscanbehydrolyzedbyhydrolyticenzymes,andtheoligosac-charidesproducedmayactassignalmolecules (15, 54).Theplantcellwallcontainsglucanasesandglycosidasesthathydrolyzexyloglucanintomonosaccharides.Endo- -1 ,4-glucanaseactivityisresponsibleforthefirststepofdegradationwherebythexyloglucanisendohydrolyzedintolargefragmentsandexo-1, 4- glucanaseactivityliberateslow-molecular-weightfractionsfromtheendsoflongpolysac-charidechains(41).TheproductionofhemicellulolyticenzymeshasbeenobservednotonlyinparasitesbutalsoinmutualisticmicroorganismssuchasRhizobiumspecies(24)andarbuscularmycorrhiza(28).Endoxyloglucanaseactivityincreasesduringgrowthanddevelopmentofroots(55).Thisactivitywasconsistentlyhigheratthebeginningofcolonizationandthelogarithmicstageofdevelopmentofmycorrhizalfungus(55).Theincreaseinfungalstructuresthatpenetratethecellwallduringthelogarithmicstageofrootcolonizationmayexplaintheincreaseinthedifferentactivitiesatthistime(56).Theevolutionofendoxyloglucanaseactivitiesinplantsparalleledthechangesintheexternalmycelium.Therewere,however,bandsofxyloglucanaseactivityinnonmycorrhizalrootsthatwereabsentinmycorrhizalroots;thatmaysuggestqualitativeinhibitionbythefungusofsomeplantactivity.Inhibi-tionofplantproteinsynthesisbyAMfungihasbeenobservedinseveralplant–AMfungiassociations(57,58).III.ENZYMESINTHEPHYSIOLOGYOFTHEASSOCIATIONA.PhosphorusUptakeItnowisestablishedthatmycorrhizalcolonizationcanenhancetheuptakefromsoilofsolubleinorganicPbyplantroots(59).Althoughparticularlyimportantinlow-Psoils,anincreasedrateofPuptakecanoccuroverarangeofsoilPlevelsevenwhenmycorrhizalgrowthresponsesnolongeroccur.TheenhancedPuptakebymycorrhizalplantsismostlikelytheresultoftheexternalfungalhyphae’sactingasanextensionoftherootsystem,therebyprovidingamoreefficient(moreextensiveandbetterdistributed)absorbingsur-faceforuptakeofnutrientsfromthesoilandfortranslocationtothehostroot(60).ExternalhyphaeofAMfungimustabsorborthophosphate(Pi)byactivetransport(59,61).TheyhaveanactiveHϩ-ATPaseintheplasmamembranethatwouldbecapableofgeneratingtherequiredproton-motiveforcetodriveHϩ-phosphatecotransport,andPcertainlyisaccumulatedtohighconcentration(62).Polyphosphate(poly-P)isamajorPreserveinmanyfungianditaccumulatesinvacuolesofAMfungi(63).Transferofmycorrhizalrootsfromlow-tohigh-Pmediaresultsinarapidaccumulationofpoly-P(64).Enzymesofpoly-Psynthesishavebeenfoundinmycorrhizaltissue(63,65).Polyphosphatekinase,whichcatalyzesthetransferoftheterminalphosphatefromATPtopoly-P,wasdetectedinbothexternalhyphaeandmycorrhizalrootsbutnotinuninfectedroots,indicatingthatpoly-Pcanbesynthesizedonlybythefungalcomponentofthemycorrhiza.AlthoughitnowseemslikelythatPistranslocatedbyprotoplasmicstreamingintotheintraradicalhyphaeaspoly-P(66),littleisyetknownofthebiochemicalmechanismsinvolved.Thetransportthroughthehyphaeandunloadingstepswithinthearbusculemaybelinkedtopoly-Pmetabolism(Fig.2).Highproportionoflong-chainpoly-PtototalCopyright...
  • 27
  • 420
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

... soil enzymes, laccase and tyrosinase. The potential role of these enzymes in the humification of anilinic and phenolic compounds and reduction of their bioavilability with the passage of time (aging) ... Inc.(nitrificationanddenitrificationeffects)aswellasbyprotectionandcreationofwetlands(4,7,39,57,85,122).Itisagainstthisbackdropofthemajorenvironmentalrelevanceoftheenzymesofnitrogenandcarboncyclingprocessesthatthischapterispresented.Theutilityofsoilenzymeactivitiesasindicatorsofsoilqualityandinmonitoringoftheeffectsofsoilpollutionispresentedelsewhere(14,34,60,116,131)andinChapters15,16 ,and1 7 .The general objective of this chapter is to highlight the current status of our understanding ofsoil carbon and nitrogen processes and the properties of the soil ... affecting the efficiency of interaction of the substrate and enzyme molecules. In other words, a portion of the enzyme molecules existing in the field soil may not be actively engaged in catalyzing their...
  • 22
  • 429
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 9 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 9 potx

... each site and placed in litter bags. In using the ap-proach of Sinsabaugh et al. (73) and Jackson et al. (29), confined and in situ POM sampleswere assayed monthly for β-glucosidase, β-N-acetylglucosaminidase, ... Inc.wererepressedbyaddedN;formapleandoak,theseactivitiesincreased.Theresultssuggestedthatwhiterotfungi,whichproduceligninasesinresponsetolowNavailability,weredisplacedbysupplementalN,slowingthedecompositionofrecalcitrantlitter.HenriksenandBreland(27)alsofocusedontheroleofNinthedecompositionprocess.Usingamicrocosmsystemofwheatstrawandsoil,theyfoundthatcarbonminer-alization,fungalbiomass,andactivitiesofcellulolyticandhemicellulolyticenzymesde-creasedwithNavailability.Intheareaofcomparativeecosystemstudies,Sinsabaughetal.(62,63)followedmassloss,NandPimmobilization,andactivityof11typesofextracellularenzymesforbirchsticks(Betulapapyfera)decomposingateightupland,riparian,andloticsitesoverafirst-orderwatershed.Masslossratesamongsitesvariedbyafactorof5andwerecorrelatedwithlignocellulaseactivities.Incontrast,relationshipsbetweenmasslossandactivitiesofacidphosphataseand -1 ,4-N-acetylglucosaminidasevariedwidelyamongsites.TheserelationshipsalongwithanalysesoftheNandPcontentofthestickssuggestedthatdifferencesinmasslossratesamongsitesweretiedtodifferencesinnutrientavail-ability.Inanotherexperiment,litterbagscontainingsenescentleavesofAgeratumconi-zoidesandMallotusphilippinensiswereplacedonthefloorofayoungtropicalforestsiteinnortheastIndia(38).OtherlitterbagscontainingleavesofHolarrhenaantidysentericaandVitexglabratawereplacedatamaturetropicalforestsite.Athigher-elevationsubtrop-icalsites,litterbagscontainingPinuskesiyaandMyricaesculentaleaveswereplacedinayoungforestandbagscontainingPinuskesiyaandAlnusnepalensisleaveswereplacedinamatureforest.Sampleswereanalyzedformassloss,bacterialandfungalnumbers,cellulosecontent,Ncontent,solublesugarcontent,andactivitiesofcellulase,amylase,andinvertase.Cellulaseandamylaseactivitieswerecorrelatedwithmicrobialnumbers.Invertaseactivitycorrelatedwithsolublesugarcontent.Enzymeactivitiesandmasslossrateswerehigheratthelowerelevationsitesbutwerenotrelatedtostandage.Inasimilarstudy,thedecompositionofPinuskesiyaandAlnusnepalensisatadisturbedroadsideforestsitewascomparedwiththatatanundisturbedsite(30).Againcellulaseandamylaseactivitieswerecorrelatedwithmicrobialnumbers,whereasinvertaseactivitywaslinkedtosolublesugars.DillyandMunch(18)studiedenzymeactivitiesandmicrobialrespirationforAlnusglutinosa(blackalder)leavesdecomposingatwetanddrysiteswithinafenforest.Masslossratesweremorethantwiceasfastatthewetsite.Microbialbiomassandrespirationdecreasedovertime(16to2.3µmolgϪ1hϪ1),buttheefficiencyofCutilizationincreased.Thesetrendswereparalleledbydecreasingβ-glucosidaseactivityandincreasingproteaseactivity.III.COMPARATIVEANALYSESInthecontextofthesuccessionalloopmodel(Fig.1),therearethreedimensionsforcomparing ... everycombination of monomer, linkage, and secondary structure (69). For lignin and other aro-matic molecules, the process is principally oxidative; the enzymes have lower specificity,but the full...
  • 17
  • 373
  • 0

Xem thêm

Từ khóa: activity ecology and applicationsfuture applications and needs for measurement in the environmentthe british empire ecology and famines in late 19th century central indiatransport and fate of toxicants in the environment damian sheafungal diversity in molecular terms profiling identification and quantification in the environmentageing and deterioration of materials in the environment application of multivariate data analbehavior and fate of aromatic bromine compounds in the environment3  mouse models of dicer dependent inactivation of mirna activity in the early limb mesenchyme and the growth platesources and occurrence of phosphates in the environmentmonitoring of nitrogen compounds in the environment biota and foodproperties and occurrence in the environmentformation and occurrence in the environmentinfluences of experience in the environment on human development and behaviorapplications in the treatment of rhinophyma and other cutaneous surgical proceduresalliances conflicts and mediations the role of population mobility in the integration of ecology into poverty reductionNghiên cứu sự biến đổi một số cytokin ở bệnh nhân xơ cứng bì hệ thốngNghiên cứu tổ hợp chất chỉ điểm sinh học vWF, VCAM 1, MCP 1, d dimer trong chẩn đoán và tiên lượng nhồi máu não cấpđề thi thử THPTQG 2019 toán THPT chuyên thái bình lần 2 có lời giảiGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitPhát triển du lịch bền vững trên cơ sở bảo vệ môi trường tự nhiên vịnh hạ longNghiên cứu, xây dựng phần mềm smartscan và ứng dụng trong bảo vệ mạng máy tính chuyên dùngNghiên cứu tổng hợp các oxit hỗn hợp kích thƣớc nanomet ce 0 75 zr0 25o2 , ce 0 5 zr0 5o2 và khảo sát hoạt tính quang xúc tác của chúngNghiên cứu khả năng đo năng lượng điện bằng hệ thu thập dữ liệu 16 kênh DEWE 5000Định tội danh từ thực tiễn huyện Cần Giuộc, tỉnh Long An (Luận văn thạc sĩ)Thơ nôm tứ tuyệt trào phúng hồ xuân hươngThiết kế và chế tạo mô hình biến tần (inverter) cho máy điều hòa không khíChuong 2 nhận dạng rui roKiểm sát việc giải quyết tố giác, tin báo về tội phạm và kiến nghị khởi tố theo pháp luật tố tụng hình sự Việt Nam từ thực tiễn tỉnh Bình Định (Luận văn thạc sĩ)chuong 1 tong quan quan tri rui roNguyên tắc phân hóa trách nhiệm hình sự đối với người dưới 18 tuổi phạm tội trong pháp luật hình sự Việt Nam (Luận văn thạc sĩ)Giáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtGiáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtChiến lược marketing tại ngân hàng Agribank chi nhánh Sài Gòn từ 2013-2015TÁI CHẾ NHỰA VÀ QUẢN LÝ CHẤT THẢI Ở HOA KỲ