0
  1. Trang chủ >
  2. Giáo Dục - Đào Tạo >
  3. Cao đẳng - Đại học >

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 14 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 14 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 14 doc

... alter the physicalstate or the location of the contaminants. In contrast, biodegradation is the primary processinvolved in the transformation and mineralization of xenobiotic compounds and, in the latter ... 1,2,4-trichlorobenzene (129), 4-ethylbenzoate (141 ), atrazine (130 ,142 ) phenoxyacetic acid (143 ), 3-chlorobenzoate (144 ), 3-phenoxybe-nzoic acid (145 ), and 2,4-dichlorophenoxyacetic acid (145 ). ... results in the elimination of the pollutant and its metabolites. Abiotic degra-dation may occur, but it is less common and often results in incomplete decontamination and sometimes the formation...
  • 27
  • 541
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 10 docx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 10 docx

... the years; these include vanilin, indulin, ferrulic acid, and, most importantly, 14 C-labeled synthetic lignins. Various fungal enzymes are involved in lignin degradation, including lignin peroxidase, ... strains and the extrac-tion of enzymes, provide complementary information on enzyme production by emphasi-zing the potential of the living hyphae and the sum of past and present activities re-spectively. ... enzymes in the upper part of the profile couldbe due to the presence of fungi (chitin in the cell walls) and arthropods (chitin in the exoskeleton) serving as substrates.Enzyme determination using...
  • 18
  • 521
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 13 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 13 doc

... Inc.mouswiththermaloptimarelevanttoanorganismdependent(52)onafluxofdissolvedcompoundsfromenzymesalreadyreleasedandfunctioningoverlongerperiodsintheenvironment.Forexample,notetheshiftinthermalactivityoptimaforcold-adaptedprote-asesfrom13°Cto10°Cto8°Casafunctionofincreasingholdingtime(Fig.3).Wealsosuggestthatthefurtherexploratorystudyofmicrobialenzymesproducedinenvironmentscharacterizedbysharpthermalgradientsmayyieldenzymeswithbothhighcatalyticactiv-ityandlonglifetimesatextremetemperatures(hotorcold),acombinationoffeaturesthatsofarhasbeenobservedonlyasaresultofgeneticengineering(describedlater )and apparentlynotofevolutionarypressuresinnature.Thetemporallyandspatiallyfluctuatingthermalgradientswithinsulfidestructuresandseaicemayhaveprovidedthenecessaryselectivepressure.V.STATUSOFTHESEARCHFORHYPERTHERMOPHILICMICROORGANISMSANDENZYMESA.FocusonCulturableHyperthermophilesAlthoughthediscoveryofhyperthermophilicmicroorganismsatmarinehydrothermalventswasreportedin1982(53,54),theirpotentiallyexcitingactivitiesinsituhavebeenstudiedbyfewandremainpoorlyconstrained(1,28).Theinsituactivitiesofenzymesthathyperthermophilesmayreleaseintotheirsurroundingsarecompletelyunknown.Thisgenerallackofecologicalinformationonthefunctioningofeitherhyperthermophilicor-ganismsorenzymesintheirnaturalsettingsstandsincontrasttowhatisknownaboutorganismsandenzymesattheotherendofthetemperaturespectrum(seeSec.V.B);marinepsychrophileshavebeenknownandstudiedforalmostacentury,muchoftheworkecologicallymotivatedfromtheoutset (14) .Perhapsbecauseoftheimmediaterecog-nitionofpracticalapplicationsforneworganismsfunctionalateverhighertemperatures(11,55),researcheffortsnowongoingworldwidehavefocusedheavilyonorganismandenzymeperformanceundercontrolledlaboratoryconditions,withspecificbiotechnologi-calorindustrialgoalsmotivatingthechoiceoforganism,enzyme,ortestconditions .The desiretoachieveafundamentalunderstandingofthebiochemical,metabolic,andgeneticbasisforhyperthermophilyhasoftenbeenpresentedasabettermeanstomanipulatestrainsandtheirproductsinvitroforcommercialpurposes.However ,the rstwhole-genomesequenceforanyorganism,informationofthemostfundamentalnature,wasobtainedforthedeep-seahyperthermophileMethanococcusjannaschii(56).Althoughecologicalconsiderationsbegstudyandenzymeforagingscenariosforhyperthermophileshavenotyetbeenformulated,theacquisitionofculturablehyperther-mophilesfrommarinehydrothermalventsnowbordersonroutine.Currentrepositoriesofmarinehyperthermophiles,virtuallyallofwhichareobligatelyanaerobic,includerepre-sentativesof25genera(examplesofwhichareshowninFig.4initalics)andphysiologicalprocesses ... Organisms and Enzymes in Their Native Habitats In contrast to the study of hyperthermophiles and their enzymes, in which commercialinterests are often at the forefront of the field, the study of cold-adapted ... Inc.C.ForaginginSubzeroSeaIceThethreebasicfeaturesoftheenzymeforagingmodelofVetterandcoworkers(10)forparticleaggregates(Fig.1)alsopertaintotheotherendofthetemperaturespectrumformicrobiallifeandenzymaticactivityepitomizedbyseaice.Aggregatesofmineralgrainsandotherparticlesandprecipitates(includingmicroorganismsandsalts)areknowntoconcentratewithinthefluidinclusionsofseaice(6),mostnotablyintheArctic,whereseabedsedimentsentrainintocoastaliceasitforms(35).TheseaggregatesincludePOM-richdetritalparticles(36)andlargeexopolymers(37)asaresultoftheautotrophicandheterotrophiccommunitiesthatdevelopannuallywithintheicecover(38–40),aswellasgenerallyelevatedlevelsofdissolvedorganiccarbon(41,42)includingenzymes(19,20).Thesea-icematrixisalsohighlyporous,especiallyinsummertime,flushingregularlywiththetidesorinfluenceofwaveswhileretainingparticleaggregatesandorganismswithinit(43,44).Evenduringwintertime(intheArctic),whensea-icetemperaturescandropbelowϪ20°C(Fig.2)toaslowasϪ35°C,dependingonsnowcoverandatmosphericconditions(8),interiormovementsofbrinefluidthroughfinelyconnectedchannelsarepossibleonascalerelevanttobacteriaandenzymes.Thishasbeendemonstratedbyphysicalanalysesofundisturbedicesectionsusingnuclearmagneticresonance(NMR)andtransmissionmicroscopy(45).Incontrasttoresearchonhydrothermalstructures,lessinformationisavailableontheabundanceorpossiblezonation,phylogeneticorotherwise(Fig.2),ofmicroorganismsinthesecoldestofwintertimesea-icehabitats(e.g.,18,36).Onlyin1999wasanonde-structive(nonwarming,nonmelting)methodforstudyingmicrobiallifeinsupercooledicedeveloped(36).Althoughextremetemperaturesdeterminethesolidphaseofbothhydrothermalstructures(bycontrollingmineralprecipitationreactions)andseaice(byfreezingwater),onlythehydrothermalstructureremainsintactforreadystudyattempera-tureslessextremethanthoseinsitu.Sea-icestructurechangesnonuniformlywitheveryincrementalchange(upordown)intemperature,presentingspecialchallengestoapostsamplingevaluationofinsitumicrobialcommunities,products,orprocesses.Nevertheless,thepredictionfromthethreebasicfeatures(abundantattachmentsites,organicmaterial,andporosity)thatenzymeforagingisanimportantmicrobialstrategyforgrowthandsurvivalinseaicehasbeensupportedbydirectenvironmentalmeasure-mentsinbothwintertime(18)andsummertimesea-icesamples(19,20).Notonlyhavehydrolyticactivitiesonsubstrateanalogsforprotein,chitin,andvariouscarbohydratesbeenreadilydetected,but,wheremeasuredandcomparedacrossothersubzeroenviron-ments(Arcticseawaterandsinkingaggregates),thelowestthermaloptimaforenzymeactivitieswereobservedinmultiyearseaice(19).Theoptimawereconsistentlypsychro-philic,downto10°C,comparedtopreviousreportsof30°C–50°C(19,20,andcitationstherein)(Table2).Inotherwords,theicecoverovertheArcticOcean,whichinsomeareaspersiststhroughadecadeofwinters(rarelyifeverthecaseinAntarcticwaters),clearlyselectsforcold-adaptedandevenstrictlypsychrophilicenzymes,asitdoesforpsychrophilicorganisms(discussedlater),makingitanobviousenvironmentforcontinuedsearchanddiscoveryofnewenzymesinthisthermalclass.Specialfeaturestoconsiderinasearchforcold-adaptedenzymesinseaiceresemblethoseforseafloorsulfidestructures,albeitatsubzerotemperatures:sharpthermalgradientsinwintertimeice(Fig.2),linkedsalinity(andotherchemical)gradients(Fig.2),andthe in uence...
  • 36
  • 341
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 20 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 20 doc

... Inc.ensurestheremovalofHgfromtheenvironmentthroughatmosphericdissipation.CurrentstudiesarenowfocusingonbiologicalreductionandmethylationreactionsasaremedialapproachtoimmobilizeHg.A.ReductionofMercury(II)NumerousmicroorganismsavoidHgtoxicitybyreducingionicHg(Hg2ϩ)tovolatileHg0,apotentiallyusefulapplicationtoremoveHgfromHg-contaminatedwater.ThereductionofHg2ϩtoHg0canbemediatedbyanumberofmicroorganisms,includingentericbacteria,Pseudomonassp.,Staphylococcusaureus,Thiobacillusferrooxidans,Streptomycessp.,andCryptococcussp.(121).TheabilityofbacteriatoreduceHg2ϩislinkedtoHgresis-tance(mer)operons(122).Thehypothesizedplasmid-mediateddetoxificationmechanismisshowninFig.6.Theplasmidcodesforaprotein(merP)thatinitiallybindstoHg2ϩ in the periplasm. The Hg2ϩis then transported through the inner membrane to the cytoplasmby the membrane-bound protein merT. In the cytoplasm, ... CN-oxidizing, and Se-reducing microbes combined and immobi-lized in calcium alginate beads. Tests were conducted in single-pass 1 -in- diameter columnswith a retention time of 9 to 18 hours. The system ... Another cell-free system was used to treat mining processsolution containing cyanide and Se. The system contained cell-free extracts of P. pseudoal-caligenes, P. stutzeri, CN-oxidizing, and...
  • 27
  • 649
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

... effective for both L- and D- glutamic acid. The PLP-Cu2ϩ-smectitehas acted as a ‘‘pseudoenzyme’’ wherein the PLP was active and independent of the protein matrix of the enzyme and the silicate structure ... aspartase-Ca-montmoril-lonite systems (159). Deamination of l- and d-glutamic and aspartic amino acids and oftheir DL racemic mixtures in the presence of Na-montmorillonite showed a stereoselectiv-ity ... Siuda3.EcologicalSignificanceofBacterialEnzymesintheMarineEnvironmentHans-Georg Hoppe, Carol Arnosti, and Gerhard F. Herndl4.EnzymesandMicroorganismsintheRhizosphereDavid C. Naseby and James M. Lynch5.EnzymesintheArbuscularMycorrhizalSymbiosisJose´Manuel...
  • 46
  • 555
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

... Inc.Currently,itisevidentthatmicroorganismsformcomplexmicrobialfoodwebsinallaquaticecosystems,andthattheiractivitiesandmetabolismsoftenaretightlycoupled and/ ormutuallyaffected(132 ,143 ,144 ).Therefore,itisnotsurprisingthatenzymaticpropertiesandactivitiesofdifferentcomponentscreatingthemicrobialfoodwebsinlakeecosystemshavedemonstratedcloserelationships.Severalreportshavedocumentedthestrongdependencyofbacterialsecondaryproductiononectoenzymeactivitiesofaquaticmicroorganisms(2–4,16,17,19,25,28,29,33,36,59).Thereoftenisasignificantcorrelationbetweenphytoplanktonprimaryproductionandactivitiesofdifferentectoenzymesinfreshwaterecosystems(25,28,29,33,52).Ourstudiesinlakesofdifferingdegreesofeutrophicationhaveshownmicrobialesteraseactivitytobepositivelycorrelatedtophytoplanktonprimaryproduction,bacterialsecondaryproduction,andconcentrationofdissolvedorganiccarbon (DOC) (Fig.13).Wehavefoundasignificantnegativerelationshipbetweenenzymeactivityandtheper-centageofphytoplanktonextracellularrelease(PER)ofphotosyntheticorganiccarboninthestudiedlakes.ThisnegativecorrelationbetweenPERandesteraseactivityindicatedthatenzymesynthesiswaspartiallyinhibitedinbacteriabylow-molecular-weightphoto-syntheticproductsofphytoplanktonthatwerereadilyutilizedbythesemicroheterotrophs:i.e.,catabolicrepressionofesterasesynthesiswasfoundinlakescharacterizedbyhighPERofphytoplankton(29,33).VIII.ECTOENZYMEACTIVITYANDLAKEWATEREUTROPHICATIONTheimportanceoforganicmatterasavariableforevaluatingthetrophicstatusoflakeshasbeenrecognizedsincethebeginningofthe20thcentury (145 ,146 ).Increasingconcen-trationsoforganicconstituentsinwaterarethedistinctindicatorsofacceleratedeutrophi-cationprocessesinmanylakes (147 149 ).OurstudiesclearlydemonstratedthatenzymeactivitiesweresignificantlypositivelyproportionaltoDOCcontentoflakes(Fig.13C).Asdescribedearlierinthischapter,severalmicrobialectoenzymesareresponsibleforrapidtransformationanddegradationofbothdissolvedorganicmatterandPOMinfresh-waterecosystems.Therefore,wehypothesizethatan‘‘enzymaticapproach’’canbeveryusefulinthestudiesoflakeeutrophication.Severalreportspointedoutthatmicrobialenzymaticactivitieswerecloselyrelatedtotheindicesofwatereutrophicationand/orthetrophicstatusofaquaticecosystems(25,27,29,31,33,38,52,58,62,78).Ourstudiesalongthetrophicgradientoflakes(fromoligo/mesotrophictohypereutrophiclakes[Fig.14A]supportourhypothesis(andtheassumptionsofothers)thatselectedenzymaticmicrobialactivitiesareverypracticalforarapidrecognitionofthecurrenttrophicstatusoflakes.Activitiesofalkalinephosphatase,esterase,andaminopeptidaseincreasedexponentiallyalongatrophicgradientandcorre-latedsignificantlywiththetrophicstateindexofthestudiedlakes(Fig.14B,C,D).Wealsofoundastrongrelationshipbetweenactivitiesofectoenzymesandphytoplanktonprimaryproductionintheselakes.RapidincreasesinectoenzymeactivitieswereobservedespeciallyinarangeofgraduallyeutrophiclakeswhenthevalueofCarlson’strophicstateindex(TSI)wasabove55(150)(Fig .14) .Moreover, ... for the enzymes involved in the transformation and degrada-tion of polymeric substrates outside the cell membrane: ectoenzymes (19), extracellular enzymes (20), and exoenzymes (21). In this chapter, ... resulting low-molecular-weight products are then transported across the cell mem-brane and utilized inside the cytoplasm. The hydrolysis of polymers is an acknowledged rate-limiting step in the utilizationof...
  • 38
  • 511
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

... forchitin-hydrolyzing activity by using MUF-β-d-N, N′-diacetylchitobioside, and chitobiaseactivity was then assayed in protein extracts prepared from the positive clones. The chi-tinases of marine bacteria ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st(5)distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st(5)andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st[5])orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13 ,14) (Table1).Dissolvedenzymes(15)andlargeparticlesϾ8 ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st(5)distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st(5)andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st[5])orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13 ,14) (Table1).Dissolvedenzymes(15)andlargeparticlesϾ8...
  • 35
  • 594
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

... Inc.Theresultsshowedlargedifferencesbetweenthe2daysofsamplinginsoilenzymeactivities(e.g.,alkalinephosphatase,Fig.2)andavailablesoilnutrients(e.g.,nitrate,Fig.3).Differenceswerefoundalsobetweenthevariousoilseedrapevarietieswithmostsoilenzymesmeasuredandwiththeavailablesoilnutrients.However,therewaslittlediffer-encebetweentheenzymeactivitiesintherhizosphereoftheGMandnon-GMplants.Themajorfactorinfluencingtheenzymeactivitiesandsoilnutrientsbetweenthetwosamplingdayswasthesoilmoisturecontent,whichwasincreasedbyovernightrain.Therefore,inthisfieldtrial,thedifferencesbetweensoilenzymeactivitieswerenotattrib-utabletoplantgeneticmodification,buttoenvironmentalvariationandtodifferencesinplantvariety.V.CONCLUSIONSClearlyenzymeactivitiesareusefulindeterminingperturbationsinthesoilenvironmentbroughtaboutbychangesinagriculturalpractices,theuseofagrochemicals,pollutionevents,ortheexploitationofgeneticallymodifiedorganisms.Biocontrolofpestsanddiseasesisameansbywhichenzymefunctionhasbeenexploited(43),butthereisevengreateropportunitytomonitorandmanipulateenzymesasgenerationsofplantnutrients,plant-growth-promotingagents,soilstructurestimulants,andbioremediationcatalysts.Althoughbioremediationhashadlessattentionthanbiocontrol,thepotentialforexploitationisenormous(44).Mostresearchhasbeenfocusedonmicrobialinoculants(bioaugmentation),butitisequallyrelevanttoconsiderhowtooptimizethefunctionoftheindigenousorganisms(biostimulation).Phytoremediation,byplantrootsthemselvesorassociatedmicrobiota(rhizoremediation),isbecominganincreasinglyinterestingcleanupsolutionforsoils.Mostattentionhasbeenpaidtoheavymetaldecontamination ,and whereasthereisinevitablysomeenzymeinvolvement,littlehasbeencharacterized.How-ever,rhizospheremicroorganismsproduceenzymesthathavethecapacitytocatabolizeawiderangeoforganicpollutants.MicrobialdehalogenationisdescribedindetailinChapters1 8and1 9,butofspecialinterestarehydrogencyanideandothernitriles.Notonly ... the control. In contrast, the β-glucosidase, β-galactos-idase, and N-acetyl glucosaminidase activities decreased with the inoculation of the DAPGϩstrain(Table1).Theseresultsindicatethatsoilenzymesaresensitivetotheimpact ... would in- crease the microbial P demand.Inverse trends were found with the C and N cycle enzymes in comparison to the general trend found in the P and S cycle enzymes. The F113 (DAPGϩ) strain was...
  • 15
  • 455
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

... Inc.directlycontributetoreductionofpathogenviabilityandgrowth.Inaddition,theyhavebeenproposedasmediatorsinpathwaysleadingtodefense-relatedgeneexpression(136).ThereleaseofAOSinsomeplant–pathogeninteractionscanresultindamagetothehosttissues.Therefore,mechanismsthatlimitthedurationoftheoxidativeburstanditstoxiceffectsarenecessarytominimizedamagetotheplantitself.Oneofthesemecha-nismsistheactionofendogenousantioxidantenzymes,suchassuperoxidedismutases,catalases,peroxidases,andglutathioneperoxidases,whicharecapableofneutralizingtheAOS.Duringtheestablishmentofacompatibleplant–fungusAMsymbiosis,thehostplantshowedlittlereactionatthecytologicalleveltoappressoriumformationorinfectionhyphae.Occasionallysomethickeningwasobservedinepidermalcellwallsatthepointofcontactwithappressoria(105),andonlyaresponsesimilartoHRhasbeendetectedinRiT-DNA–transformedrootsofalfalfacolonizedbyGigasporamargarita(137).Nev-ertheless,recentstudies,usingthediaminobenzidine(DAB)stainingtechnique,revealedthatabrownishstain,indicativeofH2O2accumulation,waspresentwithincorticalrootcellsinthespaceoccupiedbyclumpedarbusculesandaroundhyphaltipsattemptingtopenetraterootsofMedicagotruncatulacolonizedbyG.intraradices(138).TheseresultssuggestthatalocallyrestrictedoxidativeburstcouldbeinvolvedintheresponseoftheplanttoAMformationanddevelopment.Relativelyfewdataexistconcerningthepossibleparticipationofantioxidanten-zymesintheplantresponsetoAMformation.Apeakofcellwall–boundperoxidasewasobservedduringtheinitialstagesoffungalpenetrationinleek(Alliumporrum)cells.Onceinfectionwasestablished,theactivitydecreasedtothelevelsshowninnonmycorrhizalplants(139).Inpotatoroots,theactivityofextracellularperoxidaserecoveredinrootleachateswasnotstimulatedbyAMinfection;peroxidaseactivitypergramoffreshweightwassignificantlyenhancedinAMroots (140 ).WhenpotatoplantsweregrownwithhigherPsupply,extracellularperoxidaseactivityincreasedlinearlywithincreasingPsupply,suggestingaroleofperoxidaseinlimitingAMinfectioninwell-P-nourishedplants (140 ).Theanalysisofcatalaseandascorbateperoxidaseactivitiesduringtheearlystageoftobacco–Glomusmosseaeinteractionrevealedtransientenhancementsofbothenzymaticactivitiesintheinoculatedplants (141 ).Theseincreasescoincidedwiththestageofappre-ssoriaformationonrootsurfacesandtheappearanceofapeakofaccumulationoffreesalicylicacidininoculatedroots (141 ).Thesedataindicatetheactivationofcatalaseandperoxidaseactivitiesinrootcellswherethefungusformingappressoriamightbepartoftheplantresponsetotheinvadingfungus.Theroleoftheseenzymesinthisresponsecouldberelatedtoactivationofadefensivemechanismortoaprocessofcellwallrepairatthesiteofinfection(Fig.3).Alternatively,theearlyactivationofcatalaseandperoxidasemay ... short-chain poly-P was higher in the internal hyphae (67). Long-chain poly-P seems to be more efficient in transporting Pi from the extraradical to the intraradical part of the fungi. Activity of enzymes ... drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids.New...
  • 27
  • 420
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

... affecting the efficiency of interaction of the substrate and enzyme molecules. In other words, a portion of the enzyme molecules existing in the field soil may not be actively engaged in catalyzing their ... transforma-tions include the effect of bonding of β-d-glucosidase to a phenolic copolymer of l-tyro-sine, pyrogallol, or resorcinol (108) and of linking of urease to tannic acid (49,52). Sarkar and ... Radosevich, SJ Traina, OH Tuovinen. Atrazine mineralization in laboratory-aged soilmicrocosms inoculated with S-triazine-degrading bacteria. J Environ Qual 26:206– 214, 1997.99. R Rai, RP Singh. Effect...
  • 22
  • 429
  • 0

Xem thêm

Từ khóa: transport and fate of toxicants in the environment damian sheafungal diversity in molecular terms profiling identification and quantification in the environmentageing and deterioration of materials in the environment application of multivariate data analoccurrence and analysis of pharmaceuticals in the environmentelements heavy metals and micronutrients in the environmentanalytical methods for heavy metals in the environment quantitative determination speciation and microscopic analysisBáo cáo quy trình mua hàng CT CP Công Nghệ NPVBiện pháp quản lý hoạt động dạy hát xoan trong trường trung học cơ sở huyện lâm thao, phú thọGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitQuản lý hoạt động học tập của học sinh theo hướng phát triển kỹ năng học tập hợp tác tại các trường phổ thông dân tộc bán trú huyện ba chẽ, tỉnh quảng ninhPhối hợp giữa phòng văn hóa và thông tin với phòng giáo dục và đào tạo trong việc tuyên truyền, giáo dục, vận động xây dựng nông thôn mới huyện thanh thủy, tỉnh phú thọNghiên cứu, xây dựng phần mềm smartscan và ứng dụng trong bảo vệ mạng máy tính chuyên dùngNghiên cứu về mô hình thống kê học sâu và ứng dụng trong nhận dạng chữ viết tay hạn chếNghiên cứu khả năng đo năng lượng điện bằng hệ thu thập dữ liệu 16 kênh DEWE 5000Thiết kế và chế tạo mô hình biến tần (inverter) cho máy điều hòa không khíKiểm sát việc giải quyết tố giác, tin báo về tội phạm và kiến nghị khởi tố theo pháp luật tố tụng hình sự Việt Nam từ thực tiễn tỉnh Bình Định (Luận văn thạc sĩ)Quản lý nợ xấu tại Agribank chi nhánh huyện Phù Yên, tỉnh Sơn La (Luận văn thạc sĩ)Tranh tụng tại phiên tòa hình sự sơ thẩm theo pháp luật tố tụng hình sự Việt Nam từ thực tiễn xét xử của các Tòa án quân sự Quân khu (Luận văn thạc sĩ)Giáo án Sinh học 11 bài 15: Tiêu hóa ở động vậtGiáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtGiáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtTrách nhiệm của người sử dụng lao động đối với lao động nữ theo pháp luật lao động Việt Nam từ thực tiễn các khu công nghiệp tại thành phố Hồ Chí Minh (Luận văn thạc sĩ)BÀI HOÀN CHỈNH TỔNG QUAN VỀ MẠNG XÃ HỘIĐổi mới quản lý tài chính trong hoạt động khoa học xã hội trường hợp viện hàn lâm khoa học xã hội việt namTÁI CHẾ NHỰA VÀ QUẢN LÝ CHẤT THẢI Ở HOA KỲ